Supporting Information for:

Ligand mixed-valence and electrical conductivity in coordination complexes containing a redox-active phenalenol-substituted ligand.

Sarah Dale^a, Nico M. Bonanno^a, Mark Pelaccia^a, Alan J. Lough^b, Atsuhiro Miyawaki^c, Kazuyuki Takahashi^c, and Martin T. Lemaire^{a*}

^aDepartment of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1. ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 ^cDepartment of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan

*Corresponding author e-mail: mlemaire@brocku.ca

Table of Contents

Scheme S1. Preparation of phpl.	S2
Experimental Section	S3-S6
Figure S1. ¹ H NMR spectrum of phpl (CDCl ₃).	S7
Figure S2. ¹³ C NMR spectrum of phpl (CDCl ₃).	S8
Figure S3. UV-visible spectrum of phpl (CH ₂ Cl ₂).	S9
Figure S4. EI mass spectrum (positive ion mode) of phpl.	S10
Figure S5. Calculated structures (BP86/def2-SVP) of phpl (top), phpl anion	
radical (middle) and phpl dianion (bottom) with selected calculated bond distances (Å).	S11
Table S1. Atomic coordinates of phpl.	S12
Table S2. Atomic coordinates of phpl anion radical.	S13
Table S3. Atomic coordinates of phpl dianion.	S14
Figure S6. Calculated HOMO and LUMO of phpl (B3LYP/def2-TZVP).	S15
Table S4. Selected calculated electronic transitions of phpl	
$(B3LYP/def2-TZVP/PCM(CH_2Cl_2)).$	S16
Table S5. Crystallographic parameters for 1.	S17
Table S6. Bond lengths (Å) and angles (°) for 1.	S18-S21
Figure S7. Molecular structure of 1 with data collected at 300 K	S22
Table S7. Crystallographic parameters for 1 (300 K).	S23
Table S8. Bond distances (Å) and angles (°) for 1 (300 K).	S24-S27
Figure S8. Molecular structure of 2.	S28
Table S9. Crystallographic parameters for 2.	S29
Table S10. Bond distances (Å) and angles (°) for 2.	S30-S33
Figure S9. ESI mass spectrum (positive ion mode) of 1.	S34
Table S11. Calculated electronic transitions in 1.	S35-S36
Figure S10. Frontier molecular orbitals of 1.	S37
Figure S11. Cyclic voltammogram and differential pulse voltammogram of 1.	S38
Figure S12. ESI mass spectrum (positive ion mode) of 2.	S39
Figure S13. FT-IR spectrum of 2 (KBR).	S40
Figures S14. UV-Visible-NIR spectrum of 2.	S41
Table S12. Calculated electronic transitions in 2.	S42-S43
Figure S15. Mulliken spin density distribution in 2.	S44

Figure S16. Frontier molecular orbitals of 2.	S45
Figure S17. Cyclic voltammogram and differential pulse voltammogram of 2 .	S46
Figure S18. EPR spectrum of 2 (solid-state).	S47
Figure S19. Variable temperature magnetic susceptibility of 2.	S48
Table S10. Atomic coordinates for 1.	S49-S50
Table S11. Atomic coordinates for 2.	S51-S52
Acknowledgements	S53
References in the Supporting Information	S53

Scheme S1. Preparation of phpl. Reagents and conditions: (i) AlCl₃, dichloroethane and then conc HCl/H₂O (ii) MeI, Ag₂O, CHCl₃ and (iii) 2-hydrazinopyridine, CHCl₃, reflux.

Experimental section

General considerations

All reagents with the exception of 9-hydroxy-1-phenalenone¹⁵ were commercially available and used as received. Anhydrous solvents (CH₂Cl₂) were obtained by distillation over CaH₂. ¹H/¹³C-NMR spectra were recorded with a Bruker Avance III HD 400 Digital NMR spectrometer with a 9.4 T Ascend magnet using deuterated solvents. FT-IR spectra were recorded with a Shimadzu IRAffinity spectrometer as KBr discs and UV/Vis/NIR spectra were obtained with a Shimadzu 3600 UV-Vis-NIR spectrophotometer in CH₂Cl₂ solution using quartz cuvettes. Cyclic voltammetry (CV) experiments were performed with a Bioanalytical Systems Inc. (BASI) Epsilon electrochemical workstation. Complexes 1 and 2 were dissolved in anhydrous solvent (CH₂Cl₂) and deareated by sparging with N₂ gas for 10-15 min. Solution concentrations were approximately 10⁻³ M in analyte containing approximately 0.5 M supporting electrolyte (Bu₄NPF₆). A threeelectrode set-up was used including a glassy carbon working electrode, Ag/AgCl reference electrode, and a platinum wire auxiliary electrode. The scan rate for all CV experiments was 100 mV/s. High resolution EI mass spectra were recorded with a ThermoFisher high resolution double focusing magnetic sector mass spectrometer system and ESI mass spectra were obtained with a Bruker HCT Plus Proteineer LC-MS with electrospray and a syringe pump was used for direct sample infusion. A QD-MPMS SQUID magnetometer was used to record the variable temperature magnetic susceptibility properties of 2 at an external magnetic field of 2000 Oe over a temperature range of 2-300K. The sample was weighed into a gel cap and diamagnetic contributions were calculated using Pascal's constants. The electrical conductivity was measured by a HUSO HECS 994C conductometer. EPR spectra were recorded using a Bruker Elexsys E580 pulse spectrometer operating in CW mode. Microanalyses were performed by Canadian microanalytical LTD. (Delta, British Columbia, Canada).

Theoretical calculations. All theoretical calculations were performed with the programs ORCA 4.01^{1} or Gaussian 09 (D.01)². Geometry optimization and frequency calculations on phpl, phpl anion radical and phpl dianion were run using the BP86^{3–5} functional and def2-SVP^{6,7} basis set on all atoms. Broken-symmetry DFT⁸⁻¹⁰ and TD-DFT calculations were run using the B3LYP^{3,11} functional with the def2-TZVP⁷ basis set on all atoms. In the TD-DFT calculations the polarized continuum model (PCM) was used to model the solvent environment (CH₂Cl₂) and 40 transitions were calculated. Tight SCF convergence criteria were used for all calculations. The program Chemissian¹² was used for the preparation of the spin density and Kohn-Sham orbital figures and the program QMForge¹³ was used to analyse the TD-DFT results.

Synthesis

9-Methoxy-1-phenalenone¹⁴. 9-hydroxyphenalenone¹⁵ (0.495 g, 2.52 mmol) and Ag₂O (0.584 g, 2.52 mmol) were combined in CHCl₃ (10 mL) and heated to reflux. At reflux, 26 μ L of CH₃I was added and this same addition was repeated after 2, 4 and 6 h. After 7 h a grey-brown solid was filtered from the brown-yellow solution. The residue was washed several times with CHCl₃ and the filtrate was concentrated by rotary evaporation and pumped on under vacuum to remove excess CH₃I. A yellow-brown oil that required no further purification was obtained, Yield: Ranged between 66-94%. Spectroscopic characterization of the product was consistent with the published data.¹⁴

9-[2-(2-Pyridyl)hydrazono]-1-phenalenol (phpl). 9-Methoxy-1-phenalenone (0.800 g, 3.80 mmol) was added to a Schlenk flask (100 mL) and dissolved in CHCl₃ (50 mL) followed by rapid sparging of the solvent using N_2 for about 10 min. Then an equimolar amount of 2-hydrazinopyridine (0.416 g, 3.80 mmol) was added and the reaction mixture was refluxed under nitrogen for approximately 48 h. A color change from orange to dark red was observed as the

reaction proceeded. The solvent was removed by rotary evaporation and a dark red oil was formed which would eventually solidify to a dark red powder under reduced pressure. This material was purified by dissolution into CH₂Cl₂ (50 mL) followed by the slow addition of pentane (150 mL) with stirring. After stirring for approximately 2 h a crimson precipitate was collected by vacuum filtration and washed with pentane (3×50 mL). Yield, 0.425 g (yields typically ranged from 35-45%). The precipitated ligand powder is air/moisture sensitive and should be used immediately or stored under an inert atmosphere. ¹H NMR (CDCl₃): 13.01 (s, 1H), 8.22 (d, *J* = 4.8 Hz, 1H), 7.98 (d, *J* = 9.3 Hz, 1H), 7.97-7.88 (m, 3H), 7.68 (d, *J* = 9.3 Hz, 1H), 7.55-7.48 (m, 2H), 7.04 (d, *J* = 9.3 Hz, 1H), 6.82 (br dd, *J* = 6.3 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃): 183.3, 159.1, 156.7, 148.1, 138.7, 138.6, 138.5, 131.9, 131.5, 128.0, 125.7, 125.6, 122.7, 116.4, 114.2, 108.2, 106.5 ppm. HR-MS (EI+): Calc'd for C₁₈H₁₃N₃O (found) = *m/z* 287.1053 (287.1054). MS (ESI+): *m/z* 288.1 [M+H, 100%]. FT-IR (KBr): 3188 (w, br), 3155 (w, br), 3030 (w, br), 1633 (s), 1593 (m), 1438 (m), 1269 cm⁻¹ (s).

[Fe(phpl)₂] (1): Phpl (0.180 g, 0.620 mmol) was dissolved in MeOH (25 mL) and the solution was sparged vigorously with N₂ for 5 minutes. Fe(NO₃)₃·9H₂O (0.060 g, 0.150 mmol) was added to the phpl solution resulting in a change in colour from red to brown and then an excess of triethylamine (0.4 mL) was added, resulting in a purple colored solution that was left to stir for 4 h. A brown microcrystalline precipitate was collected by vacuum filtration, washed with MeOH $(3 \times 25 \text{ mL})$ and water (2 × 10 mL), and then dried. Yield, 0.118 g (60%). Single crystals suitable for X-ray diffraction were grown by dissolving 9-10 mg of the precipitated material in 2.5 mL of CHCl₃, which was heated gently and passed through a cotton pipette filter into a 2 dram vial. The vial was then placed in a larger vessel for vapor diffusion with 2 mL of pentane. After approximately 2-3 d, a second batch of pentane was added (1.5 mL). After standing for an

additional week, large single crystals formed on the sides of the vial. Waiting an additional week optimized the yield of crystals. Each vial contained about 2-4 mg of crystals (approximately 30% yield). The crystals were collected via gravity filtration and washed with pentane. Anal. Calc'd for % (found) $FeC_{36}H_{22}N_6O_2 \cdot 0.55CHCl_3 \cdot 0.05C_5H_{12}$: C, 63.53 (63.62); H, 3.35 (3.27); N, 12.08 (12.09). MS (ESI+): m/z 627.1 [M+H, 100%]. UV-Vis (CH₂Cl₂, cm⁻¹): 29412, 18484, 11198, 5952, 3861. FT-IR (KBr, cm⁻¹): 3435 (br s), 3037 (br s), 1612 (m), 1587 (m), 1553 (m), 1475 (w), 1454 (w), 1431 (s), 1398 (w), 1325 (w), 1285 (m), 1231 (w), 1142 (m), 1024 (m), 976 (m), 839 (m), 806 (m), 756 (m), 637 (m), 594 (m).

[Co(phpl)₂] (2): Phpl (0.250 g, 0.870 mmol) was dissolved in MeOH (40 mL) in a 125 mL Erlenmeyer flask. An excess of triethylamine (0.4 mL) was added and the mixture was stirred for approximately 2 min. Then $Co(ClO_4)_2 \cdot 6H_2O$ (0.115 g, 0.435 mmol) was added resulting in a change in colour from red to dark blue. The mixture was left to stir in air for 1 h at room temperature. A blue precipitate was collected by vacuum filtration, washed with MeOH (3×25 mL) and water $(2 \times 10 \text{ mL})$, and then dried. Yield, 0.205 g (75%). Single crystals suitable for Xray diffraction were grown by dissolving 9-10 mg of the precipitated material in 2.5 mL of CHCl₃, which was heated gently and passed through a cotton pipette filter into a 2 dram vial. The vial was then placed in a larger vessel for vapor diffusion with 2 mL of pentane. After approximately 2-3 d, a second batch of pentane was added (1.5 mL). After standing for an additional week, a third batch of pentane was added, (1.5 mL) and then left for 2 weeks. At this time the inside of the vial was coated in a purple crystalline material, with large single crystals rooted on the glass, growing in the direction of the solution. The single crystals were extremely brittle and were selected carefully for X-ray diffraction. The material were collected via gravity filtration and washed with pentane. Anal. Calc'd for % (found) CoC₃₆H₂₂N₆O₂•0.8CHCl₃•0.2C₅H₁₂: C, 61.40 (61.50); H, 3.43 (2.98); N,

11.36 (10.96). MS (ESI+): *m/z* 630.1 [M+H, 100%]. UV-Vis (CH₂Cl₂, cm⁻¹): 16863, 13192, 11547, 8757, 7402, 4931. FT-IR (KBr, cm⁻¹): 3040 (br s), (br s), 1618 (m), 1574 (m), 1559 (m), 1497 (m), 1474 (m), 1431 (s), 1404 (m), 1348 (m), 1335 (m), 1290 (w), 1269 (w), 1242 (w), 1182 (m), 1148 (m), 1026 (m), 976 (w), 839 (m), 814 (m), 754 (m), 682 (w).

Figure S1. ¹H NMR spectrum of phpl (CDCl₃).

Figure S2. ¹³C NMR spectrum of phpl (CDCl₃).

Figure S3. UV-visible spectrum of phpl (CH₂Cl₂).

Figure S4. EI mass spectrum (positive ion mode) of phpl (top is low resolution, bottom is high resolution).

Figure S5. Calculated structures (BP86/def2-SVP) of phpl (top), phpl anion radical (middle) and phpl dianion (bottom) with selected calculated bond distances (Å).

 Table S1. Atomic coordinates of phpl.

С	1.06824	-0.21249	0.42161
С	2.90439	1.34051	2.01283
С	2.46838	-0.09909	0.05363
С	0.70544	0.34546	1.67007
С	1.60107	1.13836	2.43123
С	3.38170	0.70447	0.83191
Η	1.24234	1.58384	3.37527
Η	3.58889	1.96548	2.60677
С	0.15595	-0.93295	-0.51516
Н	0.09787	-2.37786	-2.12910
С	0.78868	-1.76352	-1.53356
Н	2.54765	-2.30919	-2.63049
С	2.12134	-1.70671	-1.81311
С	2.99924	-0.82227	-1.07696
С	4.74657	0.82953	0.43097
Н	5.41649	1.46259	1.03374
С	5.22345	0.15036	-0.68348
Н	6.27851	0.24631	-0.98289
С	4.35550	-0.68430	-1.42075
Η	4.73959	-1.25034	-2.28412
0	-0.54553	0.09006	2.19711
Ν	-1.16029	-0.88180	-0.69061
Ν	-1.97515	-0.07315	-0.03265
С	-3.34062	-0.01280	-0.33330
С	-6.02800	0.16285	-0.91843
Ν	-3.80586	-0.69411	-1.39307
С	-4.16865	0.79357	0.49468
С	-5.52872	0.87586	0.18853
С	-5.11530	-0.60151	-1.66582
Η	-3.74461	1.33829	1.35333
Η	-6.19748	1.49173	0.81003
Η	-5.46508	-1.17550	-2.54405
Η	-7.09194	0.19936	-1.19492
Η	-0.59538	0.49812	3.08277
Η	-1.66868	0.37983	0.84597

С	0.97095	-0.22037	0.16570
С	2.59727	1.16980	2.08926
С	2.39531	-0.13397	-0.01302
С	0.38156	0.18126	1.47638
С	1.26155	0.98994	2.33894
С	3.22638	0.58042	0.93411
Н	0.78348	1.38604	3.25009
Н	3.23064	1.74541	2.78834
С	0.19055	-0.84616	-0.88464
Н	0.23717	-2.09668	-2.64453
С	0.87659	-1.56266	-1.92410
Н	2.74383	-2.02997	-2.90296
С	2.24617	-1.51192	-2.06578
С	3.05017	-0.75910	-1.14391
С	4.61955	0.68331	0.71765
Н	5.22450	1.24547	1.44957
С	5.23501	0.08081	-0.39226
Н	6.32393	0.16864	-0.53860
С	4.45395	-0.64029	-1.30748
Н	4.92498	-1.13143	-2.17576
0	-0.74039	-0.17444	1.89029
Ν	-1.16701	-0.82361	-1.03838
Ν	-1.79934	0.21839	-0.59120
С	-3.18093	0.11126	-0.54202
С	-5.95535	0.08561	-0.36854
Ν	-3.84250	-1.06622	-0.74018
С	-3.88239	1.31906	-0.24193
С	-5.27348	1.30470	-0.15843
С	-5.17532	-1.05410	-0.65182
Н	-3.28638	2.22903	-0.07806
Н	-5.82945	2.22858	0.07322
Н	-5.68202	-2.02809	-0.81436
Н	-7.05298	0.01629	-0.30657

Table S2. Atomic coordinates of phpl anion radical.

С	0.99325	-0.24603	0.23763
С	2.65539	1.22182	2.06476
С	2.40289	-0.11751	0.00182
С	0.44691	0.12666	1.56382
С	1.32534	0.99165	2.36435
С	3.26087	0.64078	0.90610
Н	0.86954	1.38187	3.29283
Н	3.29009	1.83487	2.73560
С	0.16550	-0.89919	-0.79739
Н	0.20916	-2.21920	-2.50016
С	0.86095	-1.65992	-1.80641
Н	2.71484	-2.15612	-2.80448
С	2.22659	-1.60153	-1.98148
С	3.04802	-0.77464	-1.12849
С	4.65423	0.76700	0.63402
Н	5.27092	1.35612	1.33872
С	5.24143	0.15390	-0.47670
Н	6.32466	0.26040	-0.66825
С	4.43617	-0.62334	-1.34523
Н	4.89120	-1.13893	-2.21122
0	-0.64344	-0.28252	2.03622
Ν	-1.16325	-0.82279	-1.02089
Ν	-1.83257	0.16702	-0.43443
С	-3.18491	0.08949	-0.49134
С	-6.01012	0.13487	-0.53168
Ν	-3.89161	-1.04383	-0.87744
С	-3.91329	1.27633	-0.09620
С	-5.30022	1.29902	-0.11982
С	-5.22303	-0.98208	-0.88526
Н	-3.31284	2.14312	0.22247
Н	-5.84654	2.21214	0.18293
Н	-5.74755	-1.91667	-1.19897
Н	-7.11256	0.09225	-0.55641

 Table S3.
 Atomic coordinates of phpl dianion.

Figure S6. Calculated HOMO (top) and LUMO (bottom) of phpl (B3LYP/def2-TZVP).

 $\label{eq:table_state} \textbf{Table S4.} Selected calculated electronic transitions of phpl (B3LYP/def2-TZVP/PCM(CH_2Cl_2).$

	Oscillator	
λ (nm)	strength	Contributions
433.593	0.916	92.0% HOMO \rightarrow LUMO
367.702	0.0258	$84.2\% \text{ HOMO} \rightarrow \text{L} + 2$
396.688	0.00699	$91.3\% \text{ HOMO} \rightarrow \text{L} + 1$
	λ (nm) 433.593 367.702 396.688	λ (nm)Oscillator\$\$\lambda\$ (nm)strength433.5930.916367.7020.0258396.6880.00699

Empirical formula	$C_{37}H_{23}Cl_3FeN_6O_2$	
Formula weight	745.81	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.9198(6) Å	$\alpha = 62.430(2)^{\circ}$.
	b = 15.2069(10) Å	$\beta = 84.064(2)^{\circ}$.
	c = 15.7177(10) Å	$\gamma = 77.040(2)^{\circ}$.
Volume	1841.8(2) Å ³	
Ζ	2	
Density (calculated)	1.345 Mg/m ³	
Absorption coefficient	0.667 mm ⁻¹	
F(000)	760	
Crystal size	0.180 x 0.100 x 0.050 mm ³	
Theta range for data collection	1.462 to 27.571°.	
Index ranges	-11<=h<=11, -19<=k<=19, -20<=l<=20	
Reflections collected	45086	
Independent reflections	8520 [R(int) = 0.0679]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7456 and 0.6765	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	8520 / 0 / 455	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0495, $wR2 = 0.1214$	
R indices (all data)	R1 = 0.0964, $wR2 = 0.1413$	
Largest diff. peak and hole	0.662 and -0.667	e.Å-3

 Table S5. Crystal data and structure refinement for 1 (CCDC 1850515).

Fe(1)-N(1)	1.876(2)	C(9)-H(9A)	0.9500
Fe(1)-O(2)	1.8823(19)	C(10)-C(11)	1.425(4)
Fe(1)-O(1)	1.8952(18)	C(10)-H(10A)	0.9500
Fe(1)-N(4)	1.902(2)	C(11)-C(12)	1.415(4)
Fe(1)-N(3)	1.934(2)	C(12)-C(13)	1.430(4)
Fe(1)-N(6)	1.943(2)	C(14)-C(15)	1.391(4)
O(1)-C(1)	1.270(3)	C(15)-C(16)	1.380(4)
O(2)-C(19)	1.303(3)	C(15)-H(15A)	0.9500
N(1)-N(2)	1.338(3)	C(16)-C(17)	1.384(4)
N(1)-C(11)	1.387(3)	C(16)-H(16A)	0.9500
N(2)-C(14)	1.378(3)	C(17)-C(18)	1.374(4)
N(3)-C(18)	1.344(3)	C(17)-H(17A)	0.9500
N(3)-C(14)	1.352(3)	C(18)-H(18A)	0.9500
N(4)-C(29)	1.347(3)	C(19)-C(20)	1.419(4)
N(4)-N(5)	1.374(3)	C(19)-C(30)	1.422(4)
N(5)-C(32)	1.346(3)	C(20)-C(21)	1.351(4)
N(6)-C(36)	1.348(3)	C(20)-H(20A)	0.9500
N(6)-C(32)	1.364(3)	C(21)-C(22)	1.423(4)
C(1)-C(2)	1.442(4)	C(21)-H(21A)	0.9500
C(1)-C(12)	1.450(3)	C(22)-C(23)	1.409(4)
C(2)-C(3)	1.334(4)	C(22)-C(31)	1.412(4)
C(2)-H(2A)	0.9500	C(23)-C(24)	1.371(4)
C(3)-C(4)	1.430(4)	C(23)-H(23A)	0.9500
C(3)-H(3A)	0.9500	C(24)-C(25)	1.363(5)
C(4)-C(5)	1.387(4)	C(24)-H(24A)	0.9500
C(4)-C(13)	1.426(4)	C(25)-C(26)	1.398(4)
C(5)-C(6)	1.385(4)	C(25)-H(25A)	0.9500
C(5)-H(5A)	0.9500	C(26)-C(27)	1.416(4)
C(6)-C(7)	1.371(4)	C(26)-C(31)	1.421(4)
C(6)-H(6A)	0.9500	C(27)-C(28)	1.359(4)
C(7)-C(8)	1.411(4)	C(27)-H(27A)	0.9500
C(7)-H(7A)	0.9500	C(28)-C(29)	1.436(4)
C(8)-C(9)	1.398(4)	C(28)-H(28A)	0.9500
C(8)-C(13)	1.421(4)	C(29)-C(30)	1.433(4)
C(9)-C(10)	1.364(4)	C(30)-C(31)	1.440(4)

 Table S6.
 Bond lengths (Å) and angles (°) for 1.

C(32)-C(33)	1.411(4)	N(1)-N(2)-C(14)	110.6(2)
C(33)-C(34)	1.363(4)	C(18)-N(3)-C(14)	118.7(2)
C(33)-H(33A)	0.9500	C(18)-N(3)-Fe(1)	129.50(17)
C(34)-C(35)	1.400(4)	C(14)-N(3)-Fe(1)	111.77(17)
C(34)-H(34A)	0.9500	C(29)-N(4)-N(5)	116.9(2)
C(35)-C(36)	1.366(4)	C(29)-N(4)-Fe(1)	127.02(19)
C(35)-H(35A)	0.9500	N(5)-N(4)-Fe(1)	115.99(16)
C(36)-H(36A)	0.9500	C(32)-N(5)-N(4)	110.0(2)
C(37)-Cl(3A)	1.561(11)	C(36)-N(6)-C(32)	119.2(2)
C(37)-Cl(2A)	1.727(10)	C(36)-N(6)-Fe(1)	129.90(19)
C(37)-Cl(1)	1.735(4)	C(32)-N(6)-Fe(1)	110.82(18)
C(37)-Cl(2)	1.738(4)	O(1)-C(1)-C(2)	116.4(2)
C(37)-Cl(3)	1.785(4)	O(1)-C(1)-C(12)	124.8(2)
C(37)-Cl(1A)	1.790(15)	C(2)-C(1)-C(12)	118.8(2)
C(37)-H(37)	1.0000	C(3)-C(2)-C(1)	121.8(2)
		C(3)-C(2)-H(2A)	119.1
N(1)-Fe(1)-O(2)	92.86(9)	C(1)-C(2)-H(2A)	119.1
N(1)-Fe(1)-O(1)	94.26(8)	C(2)-C(3)-C(4)	121.9(3)
O(2)-Fe(1)-O(1)	91.32(8)	C(2)-C(3)-H(3A)	119.1
N(1)-Fe(1)-N(4)	173.99(10)	C(4)-C(3)-H(3A)	119.1
O(2)-Fe(1)-N(4)	92.11(9)	C(5)-C(4)-C(13)	119.5(3)
O(1)-Fe(1)-N(4)	89.00(8)	C(5)-C(4)-C(3)	122.1(3)
N(1)-Fe(1)-N(3)	81.26(9)	C(13)-C(4)-C(3)	118.3(3)
O(2)-Fe(1)-N(3)	89.42(9)	C(6)-C(5)-C(4)	122.0(3)
O(1)-Fe(1)-N(3)	175.49(8)	C(6)-C(5)-H(5A)	119.0
N(4)-Fe(1)-N(3)	95.42(9)	C(4)-C(5)-H(5A)	119.0
N(1)-Fe(1)-N(6)	94.32(9)	C(7)-C(6)-C(5)	119.5(3)
O(2)-Fe(1)-N(6)	172.45(8)	C(7)-C(6)-H(6A)	120.2
O(1)-Fe(1)-N(6)	90.47(9)	C(5)-C(6)-H(6A)	120.2
N(4)-Fe(1)-N(6)	80.58(9)	C(6)-C(7)-C(8)	121.0(3)
N(3)-Fe(1)-N(6)	89.37(9)	C(6)-C(7)-H(7A)	119.5
C(1)-O(1)-Fe(1)	128.06(16)	C(8)-C(7)-H(7A)	119.5
C(19)-O(2)-Fe(1)	125.66(17)	C(9)-C(8)-C(7)	121.4(3)
N(2)-N(1)-C(11)	114.3(2)	C(9)-C(8)-C(13)	118.8(2)
N(2)-N(1)-Fe(1)	118.38(17)	C(7)-C(8)-C(13)	119.9(3)
C(11)-N(1)-Fe(1)	127.27(16)	C(10)-C(9)-C(8)	121.6(3)

C(10)-C(9)-H(9A)	119.2	C(20)-C(21)-H(21A)	119.7
C(8)-C(9)-H(9A)	119.2	C(22)-C(21)-H(21A)	119.7
C(9)-C(10)-C(11)	121.0(3)	C(23)-C(22)-C(31)	119.3(3)
C(9)-C(10)-H(10A)	119.5	C(23)-C(22)-C(21)	121.8(3)
С(11)-С(10)-Н(10А)	119.5	C(31)-C(22)-C(21)	118.9(3)
N(1)-C(11)-C(12)	121.9(2)	C(24)-C(23)-C(22)	121.2(3)
N(1)-C(11)-C(10)	118.8(2)	C(24)-C(23)-H(23A)	119.4
C(12)-C(11)-C(10)	119.3(2)	C(22)-C(23)-H(23A)	119.4
C(11)-C(12)-C(13)	118.6(2)	C(25)-C(24)-C(23)	119.7(3)
C(11)-C(12)-C(1)	123.6(2)	C(25)-C(24)-H(24A)	120.1
C(13)-C(12)-C(1)	117.9(2)	C(23)-C(24)-H(24A)	120.1
C(8)-C(13)-C(4)	118.1(2)	C(24)-C(25)-C(26)	122.1(3)
C(8)-C(13)-C(12)	120.6(2)	C(24)-C(25)-H(25A)	119.0
C(4)-C(13)-C(12)	121.3(2)	C(26)-C(25)-H(25A)	119.0
N(3)-C(14)-N(2)	117.8(2)	C(25)-C(26)-C(27)	122.3(3)
N(3)-C(14)-C(15)	121.7(3)	C(25)-C(26)-C(31)	118.9(3)
N(2)-C(14)-C(15)	120.4(2)	C(27)-C(26)-C(31)	118.8(3)
C(16)-C(15)-C(14)	118.4(3)	C(28)-C(27)-C(26)	121.9(3)
C(16)-C(15)-H(15A)	120.8	C(28)-C(27)-H(27A)	119.0
C(14)-C(15)-H(15A)	120.8	C(26)-C(27)-H(27A)	119.0
C(15)-C(16)-C(17)	120.1(3)	C(27)-C(28)-C(29)	120.8(3)
C(15)-C(16)-H(16A)	120.0	C(27)-C(28)-H(28A)	119.6
С(17)-С(16)-Н(16А)	120.0	C(29)-C(28)-H(28A)	119.6
C(18)-C(17)-C(16)	118.4(3)	N(4)-C(29)-C(30)	120.9(2)
C(18)-C(17)-H(17A)	120.8	N(4)-C(29)-C(28)	119.6(3)
С(16)-С(17)-Н(17А)	120.8	C(30)-C(29)-C(28)	119.4(2)
N(3)-C(18)-C(17)	122.7(2)	C(19)-C(30)-C(29)	123.4(2)
N(3)-C(18)-H(18A)	118.7	C(19)-C(30)-C(31)	118.2(3)
C(17)-C(18)-H(18A)	118.7	C(29)-C(30)-C(31)	118.2(2)
O(2)-C(19)-C(20)	116.5(2)	C(22)-C(31)-C(26)	118.7(3)
O(2)-C(19)-C(30)	124.3(3)	C(22)-C(31)-C(30)	120.7(2)
C(20)-C(19)-C(30)	119.1(2)	C(26)-C(31)-C(30)	120.7(3)
C(21)-C(20)-C(19)	122.3(3)	N(5)-C(32)-N(6)	119.2(3)
C(21)-C(20)-H(20A)	118.9	N(5)-C(32)-C(33)	121.2(2)
C(19)-C(20)-H(20A)	118.9	N(6)-C(32)-C(33)	119.6(3)
C(20)-C(21)-C(22)	120.6(3)	C(34)-C(33)-C(32)	119.9(3)

120.0	C(35)-C(36)-H(36A)	118.5
120.0	Cl(3A)-C(37)-Cl(2A)	118.1(6)
119.6(3)	Cl(1)-C(37)-Cl(2)	111.7(2)
120.2	Cl(1)-C(37)-Cl(3)	108.0(2)
120.2	Cl(2)-C(37)-Cl(3)	110.4(2)
118.4(3)	Cl(3A)-C(37)-Cl(1A)	109.7(7)
120.8	Cl(2A)-C(37)-Cl(1A)	118.3(6)
120.8	Cl(1)-C(37)-H(37)	108.9
123.0(3)	Cl(2)-C(37)-H(37)	108.9
118.5	Cl(3)-C(37)-H(37)	108.9
	120.0 120.0 119.6(3) 120.2 120.2 118.4(3) 120.8 120.8 123.0(3) 118.5	120.0 $C(35)-C(36)-H(36A)$ 120.0 $Cl(3A)-C(37)-Cl(2A)$ $119.6(3)$ $Cl(1)-C(37)-Cl(2)$ 120.2 $Cl(1)-C(37)-Cl(3)$ 120.2 $Cl(2)-C(37)-Cl(3)$ $118.4(3)$ $Cl(3A)-C(37)-Cl(1A)$ 120.8 $Cl(2A)-C(37)-Cl(1A)$ 120.8 $Cl(1)-C(37)-H(37)$ $123.0(3)$ $Cl(2)-C(37)-H(37)$ 118.5 $Cl(3)-C(37)-H(37)$

Figure S7. Molecular structure of **1** with data collected at 300(2) K (displacement ellipsoids at 30% probability). H atoms and solvent omitted for clarity.

Empirical formula	$C_{37}H_{23}Cl_3FeN_6O_2$	
Formula weight	745.81	
Temperature	300(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.9729(16) Å	$\alpha = 63.208(5)^{\circ}$.
	b = 15.308(3) Å	$\beta = 83.982(5)^{\circ}$.
	c = 15.837(3) Å	$\gamma = 77.463(5)^{\circ}$.
Volume	1895.4(6) Å ³	
Z	2	
Density (calculated)	1.307 Mg/m ³	
Absorption coefficient	0.649 mm ⁻¹	
F(000)	760	
Crystal size	0.180 x 0.100 x 0.050 mm ³	
Theta range for data collection	1.440 to 27.705°.	
Index ranges	-11<=h<=11, -19<=k<=19, -20<=l<=20	
Reflections collected	39529	
Independent reflections	8721 [R(int) = 0.0518	3]
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.7456 and 0.6259	
Refinement method	Full-matrix least-squa	tres on F ²
Data / restraints / parameters	8721 / 0 / 456	
Goodness-of-fit on F ²	1.024	
Final R indices [I>2sigma(I)]	R1 = 0.0720, $wR2 = 0.1832$	
R indices (all data)	R1 = 0.1222, $wR2 = 0.2273$	
Largest diff. peak and hole	0.771 and -0.592 e.Å ⁻³	

 Table S7. Crystallographic parameters for 1 (300(2) K) (CCDC 1850517).

Fe(1)-N(1)	1.881(3)	C(6)-H(6A)	0.9300
Fe(1)-O(2)	1.889(3)	C(7)-C(8)	1.407(6)
Fe(1)-O(1)	1.903(3)	C(7)-H(7A)	0.9300
Fe(1)-N(4)	1.906(3)	C(8)-C(9)	1.400(6)
Fe(1)-N(3)	1.935(3)	C(8)-C(13)	1.432(6)
Fe(1)-N(6)	1.946(3)	C(9)-C(10)	1.355(6)
O(1)-C(1)	1.264(4)	C(9)-H(9A)	0.9300
O(2)-C(19)	1.295(4)	C(10)-C(11)	1.422(5)
N(1)-N(2)	1.338(4)	C(10)-H(10A)	0.9300
N(1)-C(11)	1.387(5)	C(11)-C(12)	1.418(5)
N(2)-C(14)	1.368(5)	C(12)-C(13)	1.429(5)
N(3)-C(18)	1.330(5)	C(14)-C(15)	1.409(6)
N(3)-C(14)	1.361(5)	C(15)-C(16)	1.370(6)
N(4)-C(29)	1.353(5)	C(15)-H(15A)	0.9300
N(4)-N(5)	1.368(4)	C(16)-C(17)	1.387(6)
N(5)-C(32)	1.335(5)	C(16)-H(16A)	0.9300
N(6)-C(36)	1.339(5)	C(17)-C(18)	1.381(6)
N(6)-C(32)	1.374(5)	C(17)-H(17A)	0.9300
C(1)-C(2)	1.447(5)	C(18)-H(18A)	0.9300
C(1)-C(12)	1.455(5)	C(19)-C(30)	1.426(5)
C(2)-C(3)	1.333(6)	C(19)-C(20)	1.436(6)
C(2)-H(2A)	0.9300	C(20)-C(21)	1.359(6)
C(3)-C(4)	1.426(6)	C(20)-H(20A)	0.9300
C(3)-H(3A)	0.9300	C(21)-C(22)	1.407(7)
C(4)-C(5)	1.392(6)	C(21)-H(21A)	0.9300
C(4)-C(13)	1.421(6)	C(22)-C(23)	1.412(6)
C(5)-C(6)	1.377(7)	C(22)-C(31)	1.420(6)
C(5)-H(5A)	0.9300	C(23)-C(24)	1.380(8)
C(6)-C(7)	1.359(7)	C(23)-H(23A)	0.9300

Table S8. Bond distances (Å) and angles (°) for 1 (300(2) K).

C(24)-C(25)	1.361(8)	O(1)-Fe(1)-N(3)	175.43(12)
C(24)-H(24A)	0.9300	N(4)-Fe(1)-N(3)	95.57(13)
C(25)-C(26)	1.405(6)	N(1)-Fe(1)-N(6)	94.69(13)
C(25)-H(25A)	0.9300	O(2)-Fe(1)-N(6)	172.94(12)
C(26)-C(31)	1.413(6)	O(1)-Fe(1)-N(6)	90.07(12)
C(26)-C(27)	1.420(7)	N(4)-Fe(1)-N(6)	80.66(13)
C(27)-C(28)	1.348(6)	N(3)-Fe(1)-N(6)	89.73(12)
C(27)-H(27A)	0.9300	C(1)-O(1)-Fe(1)	127.9(2)
C(28)-C(29)	1.433(5)	C(19)-O(2)-Fe(1)	125.8(2)
C(28)-H(28A)	0.9300	N(2)-N(1)-C(11)	113.9(3)
C(29)-C(30)	1.442(6)	N(2)-N(1)-Fe(1)	118.3(2)
C(30)-C(31)	1.430(5)	C(11)-N(1)-Fe(1)	127.5(2)
C(32)-C(33)	1.423(6)	N(1)-N(2)-C(14)	110.6(3)
C(33)-C(34)	1.365(7)	C(18)-N(3)-C(14)	118.8(3)
C(33)-H(33A)	0.9300	C(18)-N(3)-Fe(1)	129.9(3)
C(34)-C(35)	1.392(7)	C(14)-N(3)-Fe(1)	111.3(2)
C(34)-H(34A)	0.9300	C(29)-N(4)-N(5)	116.3(3)
C(35)-C(36)	1.371(6)	C(29)-N(4)-Fe(1)	127.1(3)
C(35)-H(35A)	0.9300	N(5)-N(4)-Fe(1)	116.5(2)
C(36)-H(36A)	0.9300	C(32)-N(5)-N(4)	109.9(3)
C(37)-Cl(3A)	1.529(14)	C(36)-N(6)-C(32)	119.7(3)
C(37)-Cl(2)	1.646(9)	C(36)-N(6)-Fe(1)	130.0(3)
C(37)-Cl(1)	1.697(10)	C(32)-N(6)-Fe(1)	110.1(3)
C(37)-Cl(2A)	1.771(13)	O(1)-C(1)-C(2)	116.6(3)
C(37)-Cl(3)	1.807(10)	O(1)-C(1)-C(12)	125.1(3)
C(37)-Cl(1A)	1.83(2)	C(2)-C(1)-C(12)	118.4(3)
C(37)-H(37)	0.9800	C(3)-C(2)-C(1)	122.0(4)
		C(3)-C(2)-H(2A)	119.0
N(1)-Fe(1)-O(2)	92.11(12)	C(1)-C(2)-H(2A)	119.0
N(1)-Fe(1)-O(1)	94.17(12)	C(2)-C(3)-C(4)	122.1(4)
O(2)-Fe(1)-O(1)	91.31(12)	C(2)-C(3)-H(3A)	118.9
N(1)-Fe(1)-N(4)	174.44(13)	C(4)-C(3)-H(3A)	118.9
O(2)-Fe(1)-N(4)	92.44(13)	C(5)-C(4)-C(13)	119.8(4)
O(1)-Fe(1)-N(4)	88.91(12)	C(5)-C(4)-C(3)	122.3(4)
N(1)-Fe(1)-N(3)	81.29(13)	C(13)-C(4)-C(3)	117.9(4)
O(2)-Fe(1)-N(3)	89.45(12)	C(6)-C(5)-C(4)	121.7(5)

C(6)-C(5)-H(5A)	119.1	C(18)-C(17)-H(17A)	120.8
C(4)-C(5)-H(5A)	119.1	C(16)-C(17)-H(17A)	120.8
C(7)-C(6)-C(5)	120.2(5)	N(3)-C(18)-C(17)	123.2(4)
C(7)-C(6)-H(6A)	119.9	N(3)-C(18)-H(18A)	118.4
C(5)-C(6)-H(6A)	119.9	C(17)-C(18)-H(18A)	118.4
C(6)-C(7)-C(8)	120.9(5)	O(2)-C(19)-C(30)	125.2(4)
C(6)-C(7)-H(7A)	119.6	O(2)-C(19)-C(20)	116.2(3)
C(8)-C(7)-H(7A)	119.6	C(30)-C(19)-C(20)	118.6(4)
C(9)-C(8)-C(7)	122.0(4)	C(21)-C(20)-C(19)	121.6(4)
C(9)-C(8)-C(13)	117.9(4)	C(21)-C(20)-H(20A)	119.2
C(7)-C(8)-C(13)	120.1(4)	C(19)-C(20)-H(20A)	119.2
C(10)-C(9)-C(8)	122.5(4)	C(20)-C(21)-C(22)	121.0(4)
C(10)-C(9)-H(9A)	118.7	C(20)-C(21)-H(21A)	119.5
C(8)-C(9)-H(9A)	118.7	C(22)-C(21)-H(21A)	119.5
C(9)-C(10)-C(11)	120.9(4)	C(21)-C(22)-C(23)	120.8(5)
C(9)-C(10)-H(10A)	119.6	C(21)-C(22)-C(31)	119.3(4)
C(11)-C(10)-H(10A)	119.6	C(23)-C(22)-C(31)	119.9(5)
N(1)-C(11)-C(12)	121.4(3)	C(24)-C(23)-C(22)	120.4(5)
N(1)-C(11)-C(10)	119.2(3)	C(24)-C(23)-H(23A)	119.8
C(12)-C(11)-C(10)	119.4(4)	C(22)-C(23)-H(23A)	119.8
C(11)-C(12)-C(13)	118.7(3)	C(25)-C(24)-C(23)	120.2(5)
C(11)-C(12)-C(1)	123.8(3)	C(25)-C(24)-H(24A)	119.9
C(13)-C(12)-C(1)	117.5(3)	C(23)-C(24)-H(24A)	119.9
C(4)-C(13)-C(12)	122.0(4)	C(24)-C(25)-C(26)	121.5(5)
C(4)-C(13)-C(8)	117.4(4)	C(24)-C(25)-H(25A)	119.2
C(12)-C(13)-C(8)	120.5(4)	C(26)-C(25)-H(25A)	119.2
N(3)-C(14)-N(2)	118.3(3)	C(25)-C(26)-C(31)	119.7(5)
N(3)-C(14)-C(15)	120.9(4)	C(25)-C(26)-C(27)	122.1(4)
N(2)-C(14)-C(15)	120.8(4)	C(31)-C(26)-C(27)	118.2(4)
C(16)-C(15)-C(14)	119.0(4)	C(28)-C(27)-C(26)	122.4(4)
C(16)-C(15)-H(15A)	120.5	C(28)-C(27)-H(27A)	118.8
C(14)-C(15)-H(15A)	120.5	C(26)-C(27)-H(27A)	118.8
C(15)-C(16)-C(17)	119.8(4)	C(27)-C(28)-C(29)	120.9(4)
C(15)-C(16)-H(16A)	120.1	C(27)-C(28)-H(28A)	119.6
C(17)-C(16)-H(16A)	120.1	C(29)-C(28)-H(28A)	119.6
C(18)-C(17)-C(16)	118.4(4)	N(4)-C(29)-C(28)	120.0(4)

N(4)-C(29)-C(30)	121.1(3)	C(35)-C(34)-H(34A)	120.1
C(28)-C(29)-C(30)	118.9(4)	C(36)-C(35)-C(34)	119.0(4)
C(19)-C(30)-C(31)	118.7(4)	C(36)-C(35)-H(35A)	120.5
C(19)-C(30)-C(29)	123.0(3)	C(34)-C(35)-H(35A)	120.5
C(31)-C(30)-C(29)	118.3(4)	N(6)-C(36)-C(35)	122.6(4)
C(26)-C(31)-C(22)	118.2(4)	N(6)-C(36)-H(36A)	118.7
C(26)-C(31)-C(30)	121.3(4)	C(35)-C(36)-H(36A)	118.7
C(22)-C(31)-C(30)	120.5(4)	Cl(2)-C(37)-Cl(1)	112.2(7)
N(5)-C(32)-N(6)	120.0(4)	Cl(3A)-C(37)-Cl(2A)	124.0(9)
N(5)-C(32)-C(33)	120.9(4)	Cl(2)-C(37)-Cl(3)	112.7(6)
N(6)-C(32)-C(33)	119.0(4)	Cl(1)-C(37)-Cl(3)	103.5(6)
C(34)-C(33)-C(32)	119.7(4)	Cl(3A)-C(37)-Cl(1A)	107.5(11)
C(34)-C(33)-H(33A)	120.2	Cl(2A)-C(37)-Cl(1A)	118.2(9)
C(32)-C(33)-H(33A)	120.2	Cl(2)-C(37)-H(37)	109.4
C(33)-C(34)-C(35)	119.7(4)	Cl(1)-C(37)-H(37)	109.4
C(33)-C(34)-H(34A)	120.1	Cl(3)-C(37)-H(37)	109.4

Figure S8. Molecular structure of **2** with data collected at 150(2) K (displacement ellipsoids at 30% probability). H atoms and solvent omitted for clarity.

Empirical formula	C ₃₇ H ₂₃ Cl ₃ CoN ₆ O ₂		
Formula weight	ula weight 748.89		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.8117(4) Å	$\alpha = 63.6340(10)^{\circ}$.	
	<i>b</i> = 15.1002(8) Å	$\beta = 83.957(2)^{\circ}$.	
	c = 15.6455(8) Å	$\gamma = 78.009(2)^{\circ}$.	
Volume	1824.31(16) Å ³		
Z	2		
Density (calculated)	1.363 Mg/m ³		
Absorption coefficient	0.731 mm ⁻¹		
F(000)	762		
Crystal size	0.150 x 0.140 x 0.140 mm ³		
Theta range for data collection	1.453 to 27.643°.		
Index ranges	-11<=h<=11, -19<=k<=19	9, -20<=l<=20	
Reflections collected	45917		
Independent reflections	8468 [R(int) = 0.0683]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6689		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8468 / 15 / 455		
Goodness-of-fit on F ²	1.046		
Final R indices [I>2sigma(I)] $R1 = 0.0483, wR2 = 0.1164$			

Table S9. Crystallographic parameters for **2** (150(2) K) (CCDC 1911792).

R indices (all data)	R1 = 0.0848, WR2 = 0.1312
Extinction coefficient	n/a
Largest diff. peak and hole	0.630 and -0.837 e.Å ⁻³

Table S10. Bond distances (Å) and angles (°) for 2 (150(2) K).

Co(1)-N(4)	1.882(2)	C(5)-C(6)	1.384(4)
Co(1)-O(1)	1.8833(17)	C(5)-H(5A)	0.9500
Co(1)-O(2)	1.8873(18)	C(6)-C(7)	1.373(4)
Co(1)-N(1)	1.896(2)	C(6)-H(6A)	0.9500
Co(1)-N(3)	1.902(2)	C(7)-C(8)	1.410(4)
Co(1)-N(6)	1.909(2)	C(7)-H(7A)	0.9500
O(1)-C(1)	1.278(3)	C(8)-C(9)	1.412(4)
O(2)-C(19)	1.314(3)	C(8)-C(13)	1.419(4)
N(1)-N(2)	1.336(3)	C(9)-C(10)	1.355(4)
N(1)-C(11)	1.366(3)	C(9)-H(9A)	0.9500
N(2)-C(14)	1.368(3)	C(10)-C(11)	1.429(4)
N(3)-C(18)	1.343(3)	C(10)-H(10A)	0.9500
N(3)-C(14)	1.363(3)	C(11)-C(12)	1.423(3)
N(4)-C(29)	1.328(3)	C(12)-C(13)	1.436(4)
N(4)-N(5)	1.390(3)	C(14)-C(15)	1.401(4)
N(5)-C(32)	1.331(3)	C(15)-C(16)	1.373(4)
N(6)-C(36)	1.356(3)	C(15)-H(15A)	0.9500
N(6)-C(32)	1.376(3)	C(16)-C(17)	1.389(4)
C(1)-C(2)	1.437(3)	C(16)-H(16A)	0.9500
C(1)-C(12)	1.444(3)	C(17)-C(18)	1.379(4)
C(2)-C(3)	1.345(4)	C(17)-H(17A)	0.9500
C(2)-H(2A)	0.9500	C(18)-H(18A)	0.9500
C(3)-C(4)	1.428(4)	C(19)-C(20)	1.416(4)
C(3)-H(3A)	0.9500	C(19)-C(30)	1.418(4)
C(4)-C(5)	1.393(4)	C(20)-C(21)	1.360(4)
C(4)-C(13)	1.420(4)	C(20)-H(20A)	0.9500

C(21)-C(22)	1.424(4)	O(1)-Co(1)-O(2)	90.20(8)
C(21)-H(21A)	0.9500	N(4)-Co(1)-N(1)	175.01(9)
C(22)-C(23)	1.406(4)	O(1)-Co(1)-N(1)	94.84(8)
C(22)-C(31)	1.413(4)	O(2)-Co(1)-N(1)	89.64(8)
C(23)-C(24)	1.372(4)	N(4)-Co(1)-N(3)	94.41(9)
C(23)-H(23A)	0.9500	O(1)-Co(1)-N(3)	176.99(9)
C(24)-C(25)	1.381(4)	O(2)-Co(1)-N(3)	88.98(8)
C(24)-H(24A)	0.9500	N(1)-Co(1)-N(3)	82.27(9)
C(25)-C(26)	1.391(4)	N(4)-Co(1)-N(6)	82.45(9)
C(25)-H(25A)	0.9500	O(1)-Co(1)-N(6)	90.28(8)
C(26)-C(27)	1.423(4)	O(2)-Co(1)-N(6)	176.44(8)
C(26)-C(31)	1.427(4)	N(1)-Co(1)-N(6)	93.83(9)
C(27)-C(28)	1.354(4)	N(3)-Co(1)-N(6)	90.71(9)
C(27)-H(27A)	0.9500	C(1)-O(1)-Co(1)	126.66(16)
C(28)-C(29)	1.444(4)	C(19)-O(2)-Co(1)	124.03(17)
C(28)-H(28A)	0.9500	N(2)-N(1)-C(11)	115.9(2)
C(29)-C(30)	1.447(4)	N(2)-N(1)-Co(1)	116.85(16)
C(30)-C(31)	1.444(4)	C(11)-N(1)-Co(1)	127.20(17)
C(32)-C(33)	1.424(4)	N(1)-N(2)-C(14)	111.0(2)
C(33)-C(34)	1.358(4)	C(18)-N(3)-C(14)	119.1(2)
C(33)-H(33A)	0.9500	C(18)-N(3)-Co(1)	129.53(18)
C(34)-C(35)	1.407(4)	C(14)-N(3)-Co(1)	111.35(17)
C(34)-H(34A)	0.9500	C(29)-N(4)-N(5)	118.0(2)
C(35)-C(36)	1.366(4)	C(29)-N(4)-Co(1)	126.78(18)
C(35)-H(35A)	0.9500	N(5)-N(4)-Co(1)	114.95(16)
C(36)-H(36A)	0.9500	C(32)-N(5)-N(4)	110.2(2)
C(37)-Cl(3A)	1.653(6)	C(36)-N(6)-C(32)	119.7(2)
C(37)-Cl(2A)	1.710(6)	C(36)-N(6)-Co(1)	129.95(19)
C(37)-Cl(2)	1.730(3)	C(32)-N(6)-Co(1)	110.21(17)
C(37)-Cl(1)	1.731(3)	O(1)-C(1)-C(2)	115.6(2)
C(37)-Cl(1A)	1.771(7)	O(1)-C(1)-C(12)	125.6(2)
C(37)-Cl(3)	1.792(4)	C(2)-C(1)-C(12)	118.8(2)
C(37)-H(37)	1.0000	C(3)-C(2)-C(1)	122.1(2)
		C(3)-C(2)-H(2A)	118.9
N(4)-Co(1)-O(1)	88.53(8)	C(1)-C(2)-H(2A)	118.9
N(4)-Co(1)-O(2)	94.04(9)	C(2)-C(3)-C(4)	121.3(2)

C(2)-C(3)-H(3A)	119.4	C(16)-C(15)-H(15A)	120.4
C(4)-C(3)-H(3A)	119.4	C(14)-C(15)-H(15A)	120.4
C(5)-C(4)-C(13)	119.7(3)	C(15)-C(16)-C(17)	119.7(2)
C(5)-C(4)-C(3)	121.7(2)	C(15)-C(16)-H(16A)	120.2
C(13)-C(4)-C(3)	118.5(2)	C(17)-C(16)-H(16A)	120.2
C(6)-C(5)-C(4)	121.5(3)	C(18)-C(17)-C(16)	118.9(3)
C(6)-C(5)-H(5A)	119.3	C(18)-C(17)-H(17A)	120.5
C(4)-C(5)-H(5A)	119.3	C(16)-C(17)-H(17A)	120.5
C(7)-C(6)-C(5)	119.9(3)	N(3)-C(18)-C(17)	122.3(2)
C(7)-C(6)-H(6A)	120.0	N(3)-C(18)-H(18A)	118.9
C(5)-C(6)-H(6A)	120.0	C(17)-C(18)-H(18A)	118.9
C(6)-C(7)-C(8)	120.6(3)	O(2)-C(19)-C(20)	115.6(2)
C(6)-C(7)-H(7A)	119.7	O(2)-C(19)-C(30)	125.0(2)
C(8)-C(7)-H(7A)	119.7	C(20)-C(19)-C(30)	119.4(2)
C(7)-C(8)-C(9)	120.7(3)	C(21)-C(20)-C(19)	122.1(3)
C(7)-C(8)-C(13)	120.1(2)	C(21)-C(20)-H(20A)	118.9
C(9)-C(8)-C(13)	119.2(2)	C(19)-C(20)-H(20A)	118.9
C(10)-C(9)-C(8)	121.2(3)	C(20)-C(21)-C(22)	120.6(3)
C(10)-C(9)-H(9A)	119.4	C(20)-C(21)-H(21A)	119.7
C(8)-C(9)-H(9A)	119.4	C(22)-C(21)-H(21A)	119.7
C(9)-C(10)-C(11)	121.3(2)	C(23)-C(22)-C(31)	119.7(3)
C(9)-C(10)-H(10A)	119.3	C(23)-C(22)-C(21)	121.8(3)
C(11)-C(10)-H(10A)	119.3	C(31)-C(22)-C(21)	118.6(2)
N(1)-C(11)-C(12)	121.3(2)	C(24)-C(23)-C(22)	121.2(3)
N(1)-C(11)-C(10)	119.1(2)	C(24)-C(23)-H(23A)	119.4
C(12)-C(11)-C(10)	119.5(2)	C(22)-C(23)-H(23A)	119.4
C(11)-C(12)-C(13)	118.3(2)	C(23)-C(24)-C(25)	119.6(3)
C(11)-C(12)-C(1)	124.0(2)	C(23)-C(24)-H(24A)	120.2
C(13)-C(12)-C(1)	117.8(2)	C(25)-C(24)-H(24A)	120.2
C(8)-C(13)-C(4)	118.1(2)	C(24)-C(25)-C(26)	121.7(3)
C(8)-C(13)-C(12)	120.4(2)	C(24)-C(25)-H(25A)	119.2
C(4)-C(13)-C(12)	121.5(2)	C(26)-C(25)-H(25A)	119.2
N(3)-C(14)-N(2)	118.5(2)	C(25)-C(26)-C(27)	122.0(3)
N(3)-C(14)-C(15)	120.9(2)	C(25)-C(26)-C(31)	119.4(3)
N(2)-C(14)-C(15)	120.6(2)	C(27)-C(26)-C(31)	118.6(2)
C(16)-C(15)-C(14)	119.1(3)	C(28)-C(27)-C(26)	122.4(3)

C(28)-C(27)-H(27A)	118.8	C(32)-C(33)-H(33A)	120.3
C(26)-C(27)-H(27A)	118.8	C(33)-C(34)-C(35)	120.5(3)
C(27)-C(28)-C(29)	120.9(3)	C(33)-C(34)-H(34A)	119.8
C(27)-C(28)-H(28A)	119.5	C(35)-C(34)-H(34A)	119.8
C(29)-C(28)-H(28A)	119.5	C(36)-C(35)-C(34)	118.4(3)
N(4)-C(29)-C(28)	119.7(2)	C(36)-C(35)-H(35A)	120.8
N(4)-C(29)-C(30)	121.4(2)	C(34)-C(35)-H(35A)	120.8
C(28)-C(29)-C(30)	118.9(2)	N(6)-C(36)-C(35)	122.5(3)
C(19)-C(30)-C(31)	118.0(2)	N(6)-C(36)-H(36A)	118.8
C(19)-C(30)-C(29)	123.5(2)	C(35)-C(36)-H(36A)	118.8
C(31)-C(30)-C(29)	118.5(2)	Cl(3A)-C(37)-Cl(2A)	124.4(5)
C(22)-C(31)-C(26)	118.4(2)	Cl(2)-C(37)-Cl(1)	113.1(2)
C(22)-C(31)-C(30)	121.0(2)	Cl(3A)-C(37)-Cl(1A)	107.0(6)
C(26)-C(31)-C(30)	120.5(3)	Cl(2A)-C(37)-Cl(1A)	113.4(6)
N(5)-C(32)-N(6)	119.7(2)	Cl(2)-C(37)-Cl(3)	109.2(2)
N(5)-C(32)-C(33)	121.1(3)	Cl(1)-C(37)-Cl(3)	107.28(19)
N(6)-C(32)-C(33)	119.1(2)	Cl(2)-C(37)-H(37)	109.1
C(34)-C(33)-C(32)	119.5(3)	Cl(1)-C(37)-H(37)	109.1
C(34)-C(33)-H(33A)	120.3	Cl(3)-C(37)-H(37)	109.1

Figure S9. ESI mass spectrum (positive ion mode) of 1.

Index	E / cm ⁻¹	λ / nm	φ	Contributions (>/= 10%)
0	2851.17	3507.332	1.00E-04	87.4% HOMO(B) => LUMO(B)
1	3255.254	3071.957	4.70E-03	25.3% HOMO(A) => LUMO(A), 12.2%
				$HOMO(B) \Longrightarrow LUMO(B)$
2	4269.899	2341.976	2.40E-03	22.0% H-5(A) => LUMO(A), 14.6% H-
				1(A) => LUMO(A), 13.8% H-5(A) =>
				L+1(A)
3	8239.76	1213.628	1.49E-02	37.1% HOMO(A) => LUMO(A), 14.4%
				HOMO(A) => L+2(A), 11.0% HOMO(B)
				=> L+2(B)
4	9108.419	1097.885	3.70E-03	42.7% HOMO(B) => L+2(B), 30.6%
				HOMO(A) => L+2(A), 11.5% HOMO(A)
				=> LUMO(A)
5	10990.917	909.842	6.90E-03	78.3% HOMO(A) => L+1(A), 15.6%
				HOMO(A) => LUMO(A)
6	13110.542	762.745	2.00E-03	94.8% HOMO(B) => L+1(B)
7	13462.2	742.821	3.02E-02	52.9% H-1(A) => LUMO(A)
8	14090.506	709.698	8.10E-03	12.3% H-1(B) => LUMO(B)
9	14320.374	698.306	5.00E-04	37.2% H-1(B) => LUMO(B), 14.8% H-
				2(B) => LUMO(B), 14.4% H-1(A) =>
				L+1(A), 13.1% H-3(B) => LUMO(B)
10	14580.084	685.867	3.29E-02	52.7% H-1(A) => L+1(A), 17.2% H-1(B)
				=> LUMO(B)
11	15475.36	646.189	4.21E-02	22.3% H-2(B) => LUMO(B), 18.3% H-
				1(B) => LUMO(B), 12.2% H-3(B) =>
				LUMO(B)
12	15604.409	640.845	1.70E-02	10.6% H-1(B) => LUMO(B)
13	15978.65	625.835	3.08E-01	47.5% HOMO(A) => L+2(A), 40.6%
				$HOMO(B) \Longrightarrow L+2(B)$
14	17708.709	564.694	1.25E-02	8.43% H-8(B) => L+7(B), 7.89% H-5(A)
				=> L+12(A)
15	18146.668	551.065	1.23E-02	32.4% H-2(B) => LUMO(B), 31.7% H-
				$ 3(B) \Rightarrow LUMO(B)$

Table S11. Calculated electronic transitions of 1 (B3LYP/def2-TZVP/PCM(CH_2Cl_2).

16	18685.446	535.176	1.57E-01	61.5% H-4(B) => LUMO(B)
17	19036.298	525.312	3.70E-03	12.5% H-1(A) => L+2(A), 11.2% H-7(B)
				=> L + 7(B)
18	19433.122	514.585	5.19E-02	12.5% H-1(A) => L+2(A), 10.8%
				$HOMO(B) \implies L+4(B), 10.6\% H-2(A) \implies$
				LUMO(A)
19	19536.361	511.866	7.07E-02	44.5% H-5(B) => LUMO(B)
20	19861.403	503.489	3.60E-03	28.6% H-1(A) => L+2(A), 10.4%
	20024225	400.000	1.525.02	HOMO(B) => L+6(B)
21	20024.327	499.393	1.72E-02	15.4% H-2(A) => LUMO(A), 14.2%
	20,400,052	400.070	0.505.02	$HOMO(B) \Longrightarrow L+4(B)$
22	20409.053	489.979	8.50E-03	68.7% HOMO(A) => L+3(A)
23	20545.361	486.728	1.00E-01	20.6% H-2(A) => LUMO(A), 19.6% H-
				I(A) => L+2(A), 16.5% HOMO(A) =>
24	20044 (05	477.45	2 705 02	L+3(A)
24	20944.605	4//.45	3.79E-02	2/.4% H-/(B) => LUMO(B)
25	21249.483	470.6	4.20E-03	13.5% HOMO(B) => L+3(B), $13.1%$
				HOMO(B) => L+5(B), 10.3% HOMO(B)
26	21279 510	460.059	1.995.02	-> L+4(B) 75 49/ HOMO(D) -> L+2(D)
20	212/0.319	409.938	1.00E-02	73.4% HOMO(B) $->$ L+3(B)
27	21962.477	455.322	5.00E-03	13./% H-1(B) => L+2(B)
28	22098.785	452.514	3.40E-03	3/.0% HOMO(B) => L+/(B)
29	22217.348	450.099	1.21E-02	57.6% H-8(B) => LUMO(B)
30	22730.317	439.941	2.92E-02	28.4% H-7(B) => LUMO(B)
31	22876.303	437.134	8.10E-03	13.3% H-1(B) => L+2(B)
32	23216.669	430.725	1.51E-02	38.1% H-2(A) => L+1(A), 12.2% H-5(A)
				=> LUMO(A), 11.5% H-3(A) $=>$ L+1(A)
33	23354.59	428.181	7.30E-03	26.6% H-3(A) => LUMO(A), 20.8% H-
				4(A) => LUMO(A), 12.4% H-2(A) =>
	22024.015	415.00	1.515.00	L+2(A)
34	23924.017	417.99	1.51E-02	57.6% H-1(A) => L+3(A)
35	24010.319	416.488	5.10E-03	23.8% HOMO(A) => L+5(A), 12.1%
		44.4.000		HOMO(B) => L+6(B)
36	24097.427	414.982	2.00E-02	15.9% H-9(B) => LUMO(B)
37	24387.786	410.041	2.48E-02	16.6% H-9(B) => LUMO(B), $16.2%$
				HOMO(A) => L+8(A), 13.0% HOMO(A)
	04476.507	400.555	4.005.02	=> L+4(A)
38	24476.507	408.555	4.00E-03	26.8% H-9(B) => LUMO(B)
39	24778.159	403.581	1.90E-03	71.7% H-6(B) = LUMO(B)

Figure S10. Frontier molecular orbitals in the broken symmetry singlet state of 1 calculated at the B3LYP/def2-TZVP level of theory (Top: α -HOMO/LUMO, bottom: β -HOMO/LUMO). Isovalue 0.03.

Figure S11. Cyclic voltammogram (top) and differential pulse voltammogram (bottom) of 1 in CH_2Cl_2 containing ~0.5 M nBu_4NPF_6 .

Figure S12. ESI mass spectrum (positive ion mode) of 2.

Sample Name: NB-06-Co(PHDHPL) Crystals Ion Source Type(Polarity): ESI+ File Name:MLH1187 Solvent:DCM/MeOH

Figure S13. FTIR spectrum of 2 (KBr).

Index	E / cm ⁻¹	λ / nm	φ	Contributions (>/= 10%)
0	2666.469	3750.278	1.20E-03	99.6% HOMO(B) => LUMO(B)
				48.5% HOMO(A) => L+1(A), 48.1%
1	9469.756	1055.993	0.00E+00	$HOMO(B) \Longrightarrow L+2(B)$
2	10914.295	916.23	8.00E-04	98.6% HOMO(A) => LUMO(A)
				21.4% H-1(B) => LUMO(B), 12.3% H-
3	12810.504	780.609	8.00E-04	$9(A) \Rightarrow L+3(A), 10.6\% H-9(B) \Rightarrow L+3(B)$
				54.6% HOMO(B) => L+1(B), 30.5% H-
4	13225.073	756.139	9.70E-03	$1(A) \Rightarrow LUMO(A)$
5	13415.42	745.411	2.20E-03	61.3% H-1(B) => LUMO(B)
				32.0% HOMO(B) => L+1(B), 31.9% H-
				1(A) => LUMO(A), 15.8% H-3(B) =>
6	13573.504	736.729	2.12E-02	LUMO(B), 13.7% H-1(B) => LUMO(B),
				24.4% HOMO(A) => L+3(A), 18.4%
7	14041.306	712.184	1.40E-03	$HOMO(B) \Rightarrow L+3(B)$
				47.2% H-3(B) => LUMO(B), 24.3% H-
8	15106.764	661.955	1.08E-01	$1(A) \Rightarrow LUMO(A)$
				14.7% HOMO(A) => L+4(A), 10.8%
9	15551.982	643.005	1.00E-03	$HOMO(B) \Rightarrow L+5(B)$
				42.6% HOMO(B) => L+2(B), $42.2%$
10	16376.281	610.639	2.83E-01	$HOMO(A) \Longrightarrow L+1(A)$
				12.9% HOMO(A) => L+4(A), 10.1% H-
11	16749.716	597.025	1.50E-03	1(A) => L+3(A)
				84.7% H-2(B) => LUMO(B), 10.9% H-
12	17398.992	574.746	2.80E-03	$3(B) \Rightarrow LUMO(B)$
				36.0% HOMO(B) => L+3(B), 31.9%
				HOMO(A) => L+3(A), 10.1% H-4(B) =>
13	17565.142	569.309	6.27E-02	LUMO(B)
				38.0% H-4(B) => LUMO(B), 6.58%
14	18300.72	546.427	1.55E-01	$HOMO(B) \Rightarrow L+3(B)$
				28.9% H-4(B) => LUMO(B), 11.5%
15	18417.67	542.957	1.20E-01	$HOMO(B) \Rightarrow L+5(B)$
				20.6% HOMO(A) => L+4(A), 14.6%
16	19029.845	525.49	5.60E-03	$HOMO(B) \Rightarrow L+5(B)$
				18.5% HOMO(A) => L+4(A), 18.4%
17	19344.401	516.945	9.60E-03	HOMO(B) => L+5(B)

Table S12. Calculated electronic transitions of **2** (B3LYP/def2-TZVP/PCM(CH_2Cl_2).

				31.5% H-5(B) => LUMO(B), 10.3% H-
18	19657.345	508.716	1.90E-03	$6(B) \Rightarrow LUMO(B)$
				16.0% HOMO(A) => L+6(A), 13.2%
				HOMO(B) => L+7(B), 12.2% H-5(B) =>
19	19754.938	506.203	7.00E-03	LUMO(B)
				$14.1\% \text{ H-5(B)} \Rightarrow \text{LUMO(B)}, 13.3\%$
				HOMO(A) => L+6(A), 10.8% HOMO(B)
20	19767.843	505.872	1.36E-02	=> L + 7(B)
21	20298.555	492.646	8.00E-04	88.0% H-1(A) => L+1(A)
22	20605.046	485.318	1.16E-02	78.9% HOMO(A) => L+2(A)
-				18.7% HOMO(A) => L+3(A), 17.7%
				HOMO(B) => L+3(B), 10.0% H-1(A) =>
23	20839.753	479.852	2.00E-04	L+3(A)
				32.0% H-1(B) => L+2(B), $31.9%$ H-2(A)
24	21073.654	474.526	1.10E-03	=> L+1(A)
25	21639.855	462.11	6.20E-03	83.5% HOMO(B) => L+4(B)
26	21701.96	460.788	5.70E-03	81.4% H-2(A) => LUMO(A)
				28.4% H-4(A) => LUMO(A), 20.9% H-
27	22390.758	446.613	1.83E-02	3(B) => L+1(B)
				13.0% H-3(A) => L+1(A), 12.3% H-2(B)
28	22464.154	445.154	1.20E-03	=> L+2(B)
29	23045.68	433.921	1.71E-02	65.3% H-1(A) => L+2(A)
				40.0% H-1(A) => L+3(A), 11.6% H-7(B)
30	23170.696	431.58	1.08E-02	=> LUMO(B), 10.7% H-1(A) => L+2(A)
31	23494.124	425.638	1.20E-03	10.1% H-1(A) => L+4(A)
				60.5% H-6(B) => LUMO(B), 19.5% H-
32	23534.452	424.909	9.00E-04	$5(B) \Rightarrow LUMO(B)$
				47.8% H-7(B) => LUMO(B), 12.7% H-
33	23690.117	422.117	8.30E-03	$8(B) \Longrightarrow LUMO(B)$
34	23857.88	419.149	2.36E-02	46.9% H-8(B) => LUMO(B)
				14.7% H-7(B) => LUMO(B), 12.3% H-
35	24007.899	416.53	1.23E-02	1(A) => L+4(A)
36	24206.312	413.115	3.50E-03	85.1% H-1(B) => L+1(B)
				27.6% HOMO(A) => L+6(A), 20.9%
				HOMO(B) => L+7(B), 19.6% HOMO(B)
37	24720.087	404.529	5.00E-03	=> L+6(B), 14.4% HOMO(A) => L+5(A)
38	24757.995	403.91	4.90E-03	26.3% H-10(B) => LUMO(B)
39	24996.735	400.052	2.34E-02	38.0% H-10(B) => LUMO(B)

Figure S15. Mulliken spin density in the doublet state ($S = \frac{1}{2}$) of **2** (B3LYP/def2-TZVP). Red and blue correspond to α and β spin densities, respectively. Isovalue 0.004.

Figure S16. Frontier molecular orbitals in the doublet state ($S = \frac{1}{2}$) of **2** calculated at the B3LYP/def2-TZVP level of theory (Top: α -HOMO/LUMO, bottom: β -HOMO/LUMO). Isovalue 0.03.

Figure S17. Cyclic voltammogram of 2 (top) and differential pulse voltammogram (bottom) of 2 in CH_2Cl_2 containing ~0.5 M nBu_4NPF_6 .

Figure S18. EPR spectrum of 2 (powder) at 100K.

 Table S13. Atomic coordinates for 1 (unrestricted singlet state).

Fe	6 999000	14 564000	5 181000
$\hat{0}$	8 772,000	14 041000	5 603000
Õ	7 609000	15 646000	3 766000
Ň	6 984000	15 995000	6 393000
N	5 854000	16 697000	6 533000
N	5 200000	15 197000	4 864000
N	6.857000	13.043000	4.048000
N	6.050000	12.027000	4.503000
Ν	6.299000	13.280000	6.460000
С	9.544000	14.533000	6.482000
С	10.804000	13.858000	6.678000
Н	10.991000	13.075000	6.176000
С	11.713000	14.306000	7.546000
Н	12.530000	13.832000	7.642000
С	11.492000	15.479000	8.335000
С	12.446000	15.967000	9.217000
Η	13.269000	15.501000	9.309000
С	12.235000	17.111000	9.965000
Η	12.910000	17.429000	10.553000
С	11.045000	17.783000	9.853000
Η	10.903000	18.571000	10.365000
С	10.030000	17.321000	8.988000
С	8.801000	17.981000	8.893000
Η	8.653000	18.764000	9.410000
С	7.808000	17.524000	8.078000
Η	6.970000	17.973000	8.066000
С	8.006000	16.387000	7.243000
С	9.242000	15.696000	7.294000
С	10.245000	16.159000	8.202000
С	4.901000	16.264000	5.637000
С	3.681000	16.925000	5.531000
Η	3.485000	17.675000	6.082000
С	2.763000	16.466000	4.610000
Η	1.930000	16.912000	4.507000
С	3.054000	15.358000	3.836000
Н	2.421000	15.019000	3.213000
С	4.280000	14.757000	3.989000
Н	4.487000	13.999000	3.454000
С	8.246000	15.226000	2.710000
С	8.934000	16.212000	1.952000

Η	8.853000	17.122000	2.204000
С	9.696000	15.894000	0.883000
Η	10.177000	16.578000	0.429000
С	9.786000	14.549000	0.429000
С	10.584000	14.189000	-0.674000
Η	11.120000	14.849000	-1.098000
С	10.600000	12.901000	-1.147000
Η	11.148000	12.672000	-1.889000
С	9.829000	11.950000	-0.548000
Η	9.836000	11.067000	-0.894000
С	9.030000	12.235000	0.563000
С	8.206000	11.259000	1.172000
Η	8.173000	10.385000	0.800000
С	7.461000	11.535000	2.275000
Η	6.903000	10.858000	2.644000
С	7.506000	12.832000	2.888000
С	8.272000	13.874000	2.271000
С	9.031000	13.555000	1.091000
С	5.835000	12.166000	5.825000
С	5.201000	11.152000	6.572000
Н	4.806000	10.410000	6.128000
С	5.154000	11.235000	7.932000
Η	4.750000	10.542000	8.441000
С	5.707000	12.348000	8.574000
Η	5.696000	12.419000	9.522000
С	6.263000	13.333000	7.807000
Η	6.642000	14.088000	8.241000

Co	6.72400	14.36700	5.18100
0	8.49500	13.84700	5.55500
0	7.34300	15.52200	3.82300
Ν	6.72300	15.82000	6.40000
Ν	5.61200	16.55900	6.45700
Ν	4.95400	14.98000	4.84900
Ν	6.58100	12.88100	4.03600
Ν	5.82600	11.82600	4.53700
Ν	6.07400	13.11900	6.47100
С	9.25300	14.32200	6.46800
С	10.50800	13.64600	6.64500
Н	10.69800	12.88100	6.11300
С	11.42400	14.06000	7.53800
Н	12.23900	13.57900	7.62800
С	11.19700	15.20900	8.35500
С	12.15100	15.66400	9.26300
Н	12.97300	15.19300	9.34800
С	11.93000	16.78500	10.04400
Η	12.59500	17.07600	10.65500
С	10.74600	17.47300	9.93300
Η	10.60200	18.24900	10.46200
С	9.74500	17.03900	9.04200
С	8.51500	17.72600	8.95100
Н	8.36800	18.49300	9.49200
С	7.53900	17.31300	8.10600
Η	6.71400	17.78200	8.08300
С	7.72800	16.18600	7.25000
С	8.95300	15.46300	7.30100
С	9.96000	15.89700	8.22900
С	4.66700	16.09200	5.58400
С	3.43300	16.74200	5.45200
Н	3.24000	17.51600	5.97000
С	2.50700	16.24600	4.56800
Н	1.66900	16.68100	4.46100
С	2.80300	15.10900	3.82900
Η	2.17000	14.75200	3.21700
С	4.03000	14.50200	3.99800
Η	4.22900	13.72100	3.49600
С	7.94500	15.11400	2.72900
С	8.61800	16.11800	1.99000

Η	8.54700	17.02300	2.27300
С	9.36300	15.83000	0.89000
Η	9.82800	16.52600	0.44000
С	9.45300	14.49400	0.40600
С	10.24400	14.16100	-0.70800
Η	10.76200	14.83600	-1.13000
С	10.28100	12.88100	-1.19700
Η	10.82800	12.67000	-1.94400
С	9.51600	11.90000	-0.59700
Η	9.52800	11.01800	-0.95500
С	8.72800	12.16700	0.51800
С	7.93000	11.16500	1.13700
Η	7.91300	10.29500	0.75700
С	7.19300	11.40700	2.24700
Η	6.66000	10.71300	2.61700
С	7.20600	12.70600	2.87900
С	7.95300	13.77900	2.25500
С	8.71200	13.48700	1.06300
С	5.64300	11.97200	5.84700
С	5.06000	10.93400	6.62800
Η	4.68700	10.16900	6.20600
С	5.04300	11.04500	7.98100
Η	4.67500	10.34600	8.50800
С	5.56700	12.19000	8.61000
Η	5.57400	12.26500	9.55800
С	6.06500	13.19100	7.82600
Η	6.42000	13.96600	8.24400

Acknowledgements

We thank Dr. Paul Dube (Brockhouse Institute for Materials Research, McMaster University) for acquiring the variable temperature magnetic susceptibility data for complex **2**. We thank Prof. Art van der Est (Brock University) for recording the EPR spectrum of complex **2**.

References in the Supporting Information

(1) Neese, F. The ORCA Program System. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2012**, *2*, 73–78.

(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09 Revision D.01. 2010, Gaussian Inc., Wallingford CT.

(3) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1993**, *98*, 5648.

(4) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. *Can. J. Phys.* **1980**, *58*, 1200–1211.

(5) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* **1986**, *33*, 8822–8824.

(6) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian-Basis Sets for Atoms Li to Kr. J. Chem. Phys. **1992**, *97*, 2571–2577.

(7) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

(8) Ginsberg, A. P. Magnetic Exchange in Transition Metal Complexes. 12. Calculation of Cluster Exchange Coupling Constants with the X.Alpha.-Scattered Wave Method. *J. Am. Chem. Soc.* **1980**, *102*, 111–117.

(9) Noodleman, L. Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers. *J. Chem. Phys.* **1981**, *74*, 5737–5743.

(10) Noodleman, L.; Davidson, E. R. Ligand Spin Polarization and Antiferromagnetic Coupling in Transition Metal Dimers. *Chem. Phys.* **1986**, *109*, 131–143.

(11) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785–789.

(12) Skripnikov, L. V. Chemissian V. 4.01, Visualization Computer Program, www.chemissian.com. **2014**.

(13) Tenderholt, A. L. QMForge, Version 2.4, Http://Qmforge.Sourceforge.Net.

(14) Franz, K. D.; Martin, R. L. 1,9-Disubstituted Phenalenes—I. *Tetrahedron* **1978**, *34*, 2147–2151.

(15) Caes, B.; Jensen, D. Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques. *J. Chem. Educ.* **2008**, *85*, 413.