Crystal structure and planar defects in the layered honeycomb, delafossite-type materials Ag₃LiIr₂O₆ and Ag₃LiRu₂O₆

Sebastian Bette^{*,a}, Tomohiro Takayama^{a,b}, Viola Duppel^a, Agnieszka Poulain^c, Hidenori Takagi^{a,b}, Robert E. Dinnebier^a

*S.Bette@fkf.mpg.de

^a Max Planck Institut for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany

^b University of Stuttgart, Institute for functional Matter and Quantum Technologies, Pfaffenwaldring 57, 70569 Stuttgart, Germany

^cEuropean Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, Grenoble, France

ooo y_{obs} faultless model: --faulted model: (a) y calc y_{calc} R-wp = 20.9 % R-wp = 6.8 % --- yobs-ycale yobs-Ycalc Intensity/ counts -10000 -25000 20/ ° (Ag-K_{a1}) ooo y_{obs} faultless model: --- y_{calc} faulted model: -- y_{calc} (b) R-wp = 6.8 % R-wp = 26.4 % --- yobs-ycal Yobs-Ycald Intensity/ counts -15000 -50000 2θ/ ° (Mo-K_{α1})

Additional Tables and Figures

Figure S 1 Rietveld plots of the crystal structure refinements of $Ag_3LiIr_2O_6$ (a) and $Ag_3LiRu_2O_6$ (b) by using the ideal, faultless monoclinic structures (dashed lines) and by using supercell models with optimized faulting probabilities. Artificial peaks effects caused by the instrument are indicated by "*".

conunions.		
sum formula	Ag ₃ LiIr ₂ O ₆	Ag ₃ LiRu ₂ O ₆
molar mass/ g·mol ⁻¹	810.973	628.679
Wavelength / Å	0.5594	0.7093
<i>R</i> -p /% *	3.83	4.79
<i>R-wp</i> /% *	6.84	6.79
$R-F^2/\%$ *	2.33	2.47
starting angle (° 2θ)	4	4
final angle (° 2θ)	60	85
step width (° 2θ)	0.001	0.001
time/scan (h)	15	15
no. of variables	39	39
	· 1 0 1: 500 10 0	

Table S 1. Rietveld Refinement data of Ag₃LiIr₂O₆ and Ag₃LiRu₂O₆ at ambient conditions.

* *R*-p, *R*-wp, and *R*- F^2 are given as defined in TOPAS (Bruker AXS) for the refinements using supercell sructures

Table S 2 Crystallographic data of isotypic layered honeycomb iridates and ruthenates at room temperature.

compound		Ag ₃ LiIr ₂ O ₆	A	Ag ₃ LiRu ₂ O ₆		H ₃ LiIr ₂ O ₆ ¹		
space group		<i>C</i> 2/ <i>m</i> (12)	C	<i>C</i> 2/ <i>m</i> (12)		2)		
Z		2	2	2				
a /Å		5.287(1)	5	.226(1)	5.349(1)			
<i>b</i> /Å		9.151(2)	9	.036(1)	9.243(2)			
<i>c</i> /Å		6.503(1)	6	.527(1)	4.873(1)			
lpha /°		90	9	0	90			
β /°		106.1(1)	1	05.7(1)	111.44(2)			
γ /°		90	9	0	90	, 		
V/Å ³		302.30(7)	2	96.66(6)	224.27(6)		
Atom	Wyck.	site	S.O.F.	X	У	Z		
	-		Ag ₃ LiIr	$_{2}O_{6}$	-			
Ir(1)	4g	2	1	0	0.334(1)	0		
Li(1)	2a	2/m	1	0	0	0		
O(1)	4 <i>i</i>	т	1	0.405(17)	0	0.189(8)		
O(2)	8 <i>j</i>	1	1	0.395(11)	0.332(1)	0.164(4)		
Ag(1)	4h	2	1	1 1/2		1/2		
_Ag(2)	2d	2/m	1	1 1/2		1/2		
			Ag ₃ LiRu	1 ₂ O ₆				
Ru(1)	4g	2	1	0	0.334(1)	0		
Li(1)	2a	2/m	1	0	0	0		
O(1)	4 <i>i</i>	т	1	0.390(14)	0	0.152(8)		
O(2)	8 <i>j</i>	1	1	0.398(9)	0.323(6)	0.164(4)		
Ag(1)	4h	2	1	1/2	0.323(6)	1/2		
Ag(2)	2d	2/ <i>m</i>	1	1/2	0	1/2		
H ₃ LiIr ₂ O ₆ ¹								
Ir(1)	4g	2	1	0	0.335(3)	0		
Li(1)	2a	2/m	1	1 0		0		
O(1)	4 <i>i</i>	т	1	0.404(8)	0.323(3)	0.229(5)		
O(2)	8 <i>j</i>	1	1	0.417(8)	0	0.220(9)		

Dond		Distance/ Å		
Dolla	Ag ₃ LiIr ₂ O ₆	Ag ₃ LiRu ₂ O ₆	H ₃ LiIr ₂ O ₆ ¹	
Ir(1)/Ru(1)-O(1)	2x 2.10(5)	2x 1.97(2)	2x 2.04(3)	
Ir(1)/Ru(1)-O(2)	2x 2.07(5)	2x 2.07(4)	4x 2.01(3)	
	2x 2.03(5)	2x 1.94(3)		
Li(1)-O(1)	2x 2.16(7)	2x 2.01(7)	4x 2.08(6)	
Li(1)-O(2)	4x 2.04(3)	4x 2.07(3)	4x 2.15(3)	
Ag(1)-O(2)	2x 2.09(3)	2x 2.11(3)	-	
Ag(2)-O(1)	2x 1.94(5)	2x 2.17(5)	-	

 Table S 3 Selected bond distances of isotypic layered honeycomb iridates and ruthenates at room temperature

Figure S 2. Comparison of the measured (b) and the simulated (a,c) PED-patterns of $Ag_3LiRu_2O_6$. The positions of bright spots within the streaks is highlighted by light blue circles.

Figure S 3. HRTEM micrographs of $Ag_3LiRu_2O_6$ along zone axis [110] and simulated images (insets) with an assumed thickness of 5.22 nm.

Figure S 4. HRTEM micrograph of Ag3LiIr2O6. The stacking order of the layers I s indicated by cyan, green and yellow arrows.

Table S 4. Se	elected commands	in TOPAS	syntax th	at were	used to	perform	a grid	search	in the	parameter	space of
the transition	probabilities.										

TOPAS-syntax	Explanation
num_runs 101	The input file is executed 101 times.
seed	Before execution of the input file the random number generator creates a new set of random numbers.
prm !px =(##Run_Number##)/100;	The run number is used as a running index, starting at 0, from one run to the next one the parameter P_x is increased by 0.01, which lead to $P_x = 1$ in the last run.
out "grid.txt" append Out(Get(r_wp),\t%11.5f) Out(pf, "\t%11.5f\n")	The R-wp value and the parameter value of P_x are stored in a separate ASCII file, as the INP-file is not modified and not OUT file is created when "num_runs" is used.

site faultless structure	site supercell structure	x	У	Z
Ru(1)	Ru(10)	0	yru	0
	Ru(11)	0	-yru	0
	Ru(12)	0.5	yru +0.5	0
	Ru(13)	0.5	-yru +0.5	0
Li(1)	Li(10)	0	0	0
	Li(11)	0.5	0.5	0
O(1)	O(10)	x01	0	zo1 /200
	O(11)	- xo1	0	-zo1 /200
	O(12)	xo1 +0.5	0.5	zo1 /200
	O(13)	- xo1 +0.5	0.5	-zo1 /200
O(2)	O(20)	xo2	yo2	zo2 /200
	O(21)	- xo2	yo2	-zo2/200
	O(22)	xo2	- yo2	zo2 /200
	O(23)	- xo2	- yo2	-zo2 /200
	O(24)	xo2 +0.5	yo2 +0.5	zo2 /200
	O(25)	- xo2 +0.5	yo2 +0.5	-zo2/200
	O(26)	xo2 +0.5	- yo2 +0.5	zo2 /200
	O(27)	- xo2 +0.5	- yo2 +0.5	-zo2 /200
Ag(1)	Ag(10)	xo2	yo2	0.5/200
	Ag(11)	x02	- yo2	0.5/200
	Ag(12)	xo2 +0.5	yo2 +0.5	0.5/200
	Ag(13)	xo2 +0.5	- yo2 +0.5	0.5/200
Ag(2)	Ag(20)	xo1	0	0.5/200
	Ag(21)	xo1 +0.5	0.5	0.5/200
		stacking vectors		
	vector	x-component	y-component	z-component
	S1	- xo1	0	1/200
	S2-1	- xo2	- yo2	1/200
	S2-2	(xo1 + xo2 +0.5)-2	yo2 -0.5	1/200
	S2-3	(xo1 + xo2 +0.5)-2	-yo2+0.5	1/200
	S2-4	- xo2	yo2	1/200

Table S 5. Overview on the pseudo-monoclinic constraints (indicated by bold, red font) that were applied to refine the layer constitution and the stacking vectors using a 200-layers supercell to approximate the microstructure of the sample.

References

1. S. Bette, T. Takayama, K. Kitagawa, R. Takano, H. Takagi and R. E. Dinnebier, *Dalton Trans.*, 2017, **46**, 15216-15227.