Supporting Information for

Aluminium complex as an efficient catalyst for chemo-selective reduction of amides to amines

Suman Das,^a Himadri Karmakar,^a Jayeeta Bhattacharjee,^a Tarun K. Panda*^a

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi – 502 285, Sangareddy, Telangana, India.

Table of contents

- 1. Crystallography details
- 2. NMR spectra for metal complexes.
- 3. NMR spectra of the amines hydrochlorides.
- 4. References

X-ray crystallographic analyses:

Single crystals of complexes 1a, 1b and 2b were grown from a concentrated solution of toluene or toluene/THF (3:1) in an argon-filled atmosphere at -35 °C. A crystal of suitable dimensions of complexes 1a, 1b and 2b were mounted on a CryoLoop (Hampton Research Corp.) with a layer of light mineral oil. All the crystals 1a, 1b, and 2b were measured at 293 K. All measurements were made on a Rigaku Supernova X-calibur Eos CCD detector with graphite monochromatic Mo-K α (0.71073 Å) radiation. Crystal data and structure refinement parameters of complexes 1a, 1b and **2b** are summarized in Table TS1. The structures were solved by direct methods (SIR2004)^[1] and refined on F^2 by full-matrix least-squares methods, using SHELXL-2016/6.^[2] Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. The function minimized was $\left[\sum w(Fo^2 - Fc^2)^2\right] (w = 1 / [\sigma^2$ $(Fo^2) + (aP)^2 + bP$]), where P = (Max(Fo^2,0) + 2Fc^2) / 3 with $\sigma^2(Fo^2)$ from counting statistics. The function R1 and wR2 were $(\Sigma ||Fo| - |Fc||) / \Sigma |Fo|$ and $[\Sigma w (Fo^2 - Fc^2)^2 / \Sigma (wFo^4)]^{1/2}$, respectively. The ORTEP-3 program was used to draw the molecules of 1a, 1b, and 2b. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1912620 (1a), 1912619 (1b) 1912621 (2b). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: + (44)1223-336-033; email: deposit@ccdc.cam.ac.uk).

Crystal Parameters	1a	1b	2b
Identification code	8421	8494	8524
CCDC No.	1912620	1912619	1912621
Empirical formula	C ₂₁ H ₁₇ N ₂ PS	C ₂₁ H ₁₇ N ₂ PSe	C ₂₇ H ₃₀ AlN ₂ PSe
Formula weight	360.40	407.30	535.44
<i>T</i> (K)	293(2) K	293(2) K	293(2) K
λ (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_1/n$	$P 2_1/n$	<i>P</i> -1
a(Å)	9.6363(4)	9.6733(4)	9.8019(13)
b (Å)	15.4223(6)	15.4600(8)	10.1178(13)
c(Å)	12.3931(4)	12.4870(5)	13.5450(19)
α (°)	90	90	89.947(11)
$\beta(\circ)$	104.016(4)	103.385(4)	83.892(11)
$\gamma(^{\circ})$	90	90	81.113(11)
$V(Å^3)$	1786.95(12)	1816.70(14)	1319.5(3)
Ζ	4	4	2
$D_{\text{calc}} \text{ g cm}^{-3}$	1.340	1.489	1.348
$\mu (\text{mm}^{-1})$	0.276	2.160	1.538
F(000)	752	824	552
Theta range for	3.138 to 29.100	3.030 to 29.121	2.998 to 29.082
data collection	deg	deg.	deg
Limiting indices -	-13<=h<=10,	-12<=h<=13,	-12<=h<=13,
_	-19<=k<=20,	-21<=k<=17,	-13<=k<=13,
	-14<=l<=16	-17<=l<=16	-17<=l<=17
Reflections collected / unique	8530 / 4124	13856 / 4328 [R(int)	10966 / 6005 [R(int) =
	[R(int) = 0.0420]	= 0.0525]	0.0490]
Completeness to theta	99.8 %	99.8 %	99.8 %
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	1.00000 and 0.91324	1.00000 and 0.24268	1.00000 and 0.93571
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	4124 / 0 / 226	4328 / 0 / 226	6005 / 0 / 300
Goodness-of-fit on F ²	1.064	1.028	1.047
Final R indices [I>2sigma(I)]	R1 = 0.0550	R1 = 0.0485	R1 = 0.0729
	wR2 = 0.1066	wR2 = 0.0957	wR2 = 0.1764
R indices (all data)	$R_1 = 0.1010$	R1 = 0.0963	$R_1 = 0.1274$
	wR2 = 0.1370	wR2 = 0.1175	wR2 = 0.2092

 Table TS1. Crystallography table of metal complexes 1a, 1b, and 2b.

Figure FS1. ¹H NMR spectra of complex 1a.

Figure FS2. ¹³C NMR spectra of complex 1a.

Figure FS4. ¹H NMR spectra of complex 1b.

Figure FS6. ¹³P NMR spectra of complex 1b.

Figure FS7. ¹H NMR spectra of complex 2a.

Figure FS8. ¹³P NMR spectra of complex 2a.

Figure FS10. ¹H NMR spectra of complex 2b.

Figure FS11. ¹³C NMR spectra of complex 2b.

Figure FS12. ¹³P NMR spectra of complex 2b.

Catalytic aluminium complex as an efficient catalyst for selective reduction of amides to amines

<u>Characterisation Data</u>: (reduction of amides to amines).

Isolated yield (**3a**) (39.6 mg, 96%). ¹H NMR (400 MHz, D₂O): δ 3.13 - 3.07 (q, 2H, CH₂), 2.78 (s, 6H, CH₃), 2.64 (s, 1H, NH), 1.24 - 1.20 (t, 3H, CH₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 83.7, 75.5, 38.3, 35.6, 34.5, 23.7, 19.9 ppm.

Isolated yield (**3b**) (46.2 mg, 94%). ¹H NMR (400 MHz, D₂O): δ 2.91 (s, 1H, *CH*₂), 2.83 (s, 1H, *CH*₂), 2.63 (s, 2H, *CH*₂), 2.35-2.30 (s, 2H, *CH*₂), 1.29 - 1.27 (d, 6H, *CH*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 83.9, 75.6, 37.4, 35.4, 34.6, 26.2, 23.8, 8.8 ppm.

Isolated yield (**3c**) (51.4 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 3.27 – 3.16 (m, 6H, CH₂), 1.96 (s, 1H, NH), 0.94 – 0.91 (s, 1H, CH₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 83.9, 75.6, 37.4, 35.4, 34.6, 26.2, 23.8, 8.8 ppm.

Isolated yield (**3d**) (63.1 mg, 88%). ¹H NMR (400 MHz, D₂O): δ 3.06 (s, 2H, CH₂), 1.69 – 1.63 (m, 2H, CH₂), 1.57- 1.53 (m, 3H, CH₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 75.6, 44.7, 23.9, 22.2, 21.5, ppm. ¹⁹F NMR (376 MHz, D₂O): δ – 64.8 ppm.

Isolated yield (**3e**) (44.2 mg, 92%). ¹H NMR (400 MHz, D₂O): δ 3.33 – 3.30 (m, 2H, CH₂), 2.64 (s, 3H, CH₃), 2.26 – 2.22 (m, 2H, CH₂), 1.89 – 1.83 (m, 2H, CH₂) ppm. ¹³C NMR (100 MHz, D₂O): δ 75.5, 50.2, 30.6, 29.4, 23.7, 16.8 ppm.

Isolated yield (**3f**) (70.2 mg, 92%). ¹H NMR (400 MHz, D₂O): δ 7.41 - 7.35 (m, 5H, Ar*H*), 4.24 (s, 2H, *CH*₂), 3.03 - 2.65 (m, 1H, N*H*), 1.14 (s, 6H, *CH*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 130.8, 130.1, 129.3, 128.6, 126.6, 75.6, 42.1, 39.6, 35.2, 34.5, ppm.

Isolated yield (**3g**) (101.5 mg, 964%). ¹H NMR (400 MHz, D₂O): δ 7.41 (s, 5H, Ar*H*), 4.21 (s, 2H, C*H*₂), 3.73 – 3.67 (m, 2H, C*H*₂), 1.35 - 1.33 (d, 6H, C*H*₃), 1.12 (s, 6H, N(C*H*₃)₂), 1.01- 0.97(m, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 130.6, 130.4, 129.6, 129.2, 75.6, 54.6, 50.1, 23.8, 18.0, 17.2 ppm.

Isolated yield (**3h**) (88.4 mg, 96%). ¹H NMR (400 MHz, D₂O): δ 7.41 - 7.36 (m, 5H, Ar*H*), 4.18 (s, 2H, *CH*₂), 3.12-3.02 (q, 4H, *CH*₂), 1.21 - 1.17 (t, 1H, *CH*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 130.7, 130.0, 129.3, 129.1, 83.9, 75.6, 55.8, 46.7, 23.7, 8.1 ppm.

Isolated yield (**3i**) (103.5 mg, 93%). ¹H NMR (400 MHz, D₂O): δ 7.46 - 7.41 (m, 1H, Ar*H*), 7.37 - 7.35 (m, 2H, Ar*H*), 7.29 - 7.25 (m, 2H, Ar*H*), 7.22 - 7.18 (m, 2H, Ar*H*), 7.11 - 7.09 (m, 2H, Ar*H*) 4.5 (s, 2H, C*H*₂), 3.17 (s, 3H, C*H*₃), 2.91 (s, 1H, N*H*) ppm. ¹³C NMR (100 MHz, D₂O): δ 139.2, 130.9, 130.3, 130.0, 129.9, 128.9, 121.7, 121.4, 75.6, 63.8, 44.0, 36.9, 23.8 ppm.

Isolated yield (**3j**) (81.9 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 7.45 - 7.40 (m, 2H, Ar*H*), 7.32 - 7.31 (m, 2H, Ar*H*), 7.23 - 7.21 (m, 1H, Ar*H*), 3.50 (s, 2H, C*H*₂), 2.86 – 2.83 (m, 2H, C*H*₂). 1.71 – 1.47 (m, 2H, C*H*₂) ppm. ¹³C NMR (100 MHz, D₂O): δ 133.8, 130.7, 129.8, 129.2, 122.9, 55.5, 47.6, 27.3, 23.7, 20.5 ppm.

Isolated yield (**3k**) (97.1 mg, 89%). ¹H NMR (400 MHz, D₂O): δ 7.26 - 7.24 (d, *J* = 8.6 Hz 1H, Ar*H*), 6.95 - 6.92 (d, *J* = 8.67 Hz 1H, Ar*H*), 4.22 (s, 2H, C*H*₂), 3.83 (s, 3H, OC*H*₃), 3.48 - 3.45 (q, 2H, C*H*₃). 3.28 - 3.15 (q, 2H, C*H*₃), 1.13 - 1.02 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 159.9, 128.3, 127.9, 114.0, 75.6, 55.5, 44.4, 40.1, 23.9, 19.8, 13.6, 12.3 ppm.

Isolated yield (**3l**) (83.8 mg, 82%). ¹H NMR (400 MHz, D₂O): δ 7.38 - 7.34 (m, Hz 2H, Ar*H*), 7.19 - 7.15 (m, 2H, Ar*H*), 4.25 (s, 2H, C*H*₂), 3.46 - 3.45 (q, 2H, C*H*₃), 3.23 - 3.21 (q, 2H, C*H*₃), 1.321-1.34 (t, 3H, C*H*₃), 1.06 - 1.00 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 133.3, 128.1, 116.3, 115.8, 83.9, 75.6, 55.1, 46.7, 42.3 23.7, 13.2, 12.1 ppm.

Isolated yield (**3m**) (93.5 mg, 84%). ¹H NMR (400 MHz, D₂O): δ 7.61 - 7.59 (m, Hz 2H, Ar*H*), 7.34 – 7.32 (m, 2H, Ar*H*), 4.22 (s, 2H, C*H*₂), 3.15 – 3.10 (q, 2H, C*H*₃), 3.09 – 2.98 (q, 2H, C*H*₃), 1.25 - 1.17 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 132.4, 129.4, 128.9, 127.6, 75.7, 46.8, 23.8, 8.2 ppm.

Isolated yield (**3n**) (116.2 mg, 85%). ¹H NMR (400 MHz, D₂O): δ 7.54 - 7.51 (m, Hz, 2H, Ar*H*), 7.26 - 7.24 (m, 1H, Ar*H*), 7.17 - 7.15 (m, 1H, Ar*H*), 4.15 (s, 2H, C*H*₂), 3.37 - 3.36 (q, 3H, C*H*₃), 3.13 - 3.02 (q, 3H, C*H*₃), 1.13 - 1.07 (q, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 133.3, 128.1, 116.3, 115.8, 83.9, 75.6, 55.1, 46.7, 42.3 23.7, 13.2, 12.1 ppm.

Isolated yield (**3o**) (142.0 mg, 87%). ¹H NMR (400 MHz, D₂O): δ 7.36 - 7.32 (m, Hz, 2H, Ar*H*), 7.16 - 7.12 (m, 2H, Ar*H*), 4.14 (s, 2H, C*H*₂), 3.46 - 3.41 (q, 3H, C*H*₃), 3.23 - 3.12 (q, 3H, C*H*₃), 1.12 - 1.17 (t, 3H, C*H*₃) 1.03 - 1.00 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 131.8, 128.1, 115.8, 115.6, 75.7, 44.4, 42.3, 40.2, 23.7, 13.2, 12.1, 10.5 ppm.

Isolated yield (**3p**) (117.4 mg, 94%). ¹H NMR (400 MHz, D₂O): δ 7.31 - 7.29 (d, *J* = 8.6 Hz, 1H, Ar*H*), 7.18 - 7.16 (d, *J* = 8.6 Hz 1H, Ar*H*), 6.90 - 6.88 (d, *J* = 8.6 Hz 1H, Ar*H*), 4.12 (s, 2H, C*H*₂), 3.70 - 3.63 (s, 3H, OC*H*₃), 3.62 - 3.57 (m, 2H, C*H*₃) 1.28 - 1.26 (d, 6H, C*H*₃), 1.22 - 1.21 (d, 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 159.6, 132.1, 127.3, 122.8, 114.6, 83.4, 75.6, 55.5, 54.2, 49.6, 23.9, 19.8, 18.05, 17.3 ppm.

Isolated yield (**3q**) (100.4 mg, 85%). ¹H NMR (400 MHz, D₂O): δ 7.51 - 7.49 (d, *J* = 8.3 Hz, 2H, Ar*H*), 7.26 - 7.24 (d, *J* = 8.3 Hz 2H, Ar*H*), 4.16 (s, 2H, C*H*₂), 3.65 - 3.62 (t, 2H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 132.3, 132.1, 129.3, 123.1, 83.9, 75.6, 54.8, 46.7, 23.7, 17.6 ppm.

Isolated yield (**3r**) (111.9 mg, 88%). ¹H NMR (400 MHz, DMSO-d₆): δ 9.19 (s, 1H, N*H*), 7.07 – 7.67 (m, 2H, Ar*H*), 7.25 – 7.20 (m, 2H, Ar*H*), 4.32 (s, 2H, C*H*₂), 3.63 - 3.61 (m, 2H, C*H*₂), 1.35 – 1.33 (d, 6H, C*H*₃) 1.31 – 1.29 (d, 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 163.4, 161.0, 133.1, 127.1, 115.5, 115.3, 81.4, 54.1, 48.8, 24.3, 20.2, 18.2, 17.3 ppm.

Isolated yield (**3s**) (135.2 mg, 89%). ¹H NMR (400 MHz, D₂O): δ 7.57 - 7.55 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.34 - 7.32 (d, *J* = 8.4 Hz, 2H, Ar*H*), 4.22 (s, 2H, *CH*₂), 3.57 – 3.68 (m, 2H, *CH*), 1.36 - 1.34 (d, 6H, *CH*₃), 1.30 - 1.28 (d, 6H, *CH*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 132.2, 131.5, 129.7, 129.1, 123.3, 83.9, 75.6, 54.6, 49.4, 23.7, 17.9, 17.1 ppm.

Isolated yield (**3t**) (163.2 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 7.83 - 7.81 (d, *J* = 8 Hz, 2H, Ar*H*), 7.24 - 7.22 (d, *J* = 8 Hz, 2H, Ar*H*), 4.27 (s, 2H, C*H*₂), 3.77 - 3.37 (m, 1H, C*H*), 3.18 - 3.13 (m, 1H, C*H*), 1.33 - 1.29 (d, 6H, C*H*₃) 1.26 - 1.22 (d, 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 140.8, 134.9, 78.2, 57.2, 26.3, 20.9, 10.9 ppm.

Isolated yield (**3u**) (141.4 mg, 95%). ¹H NMR (400 MHz, D₂O): δ 7.52 - 7.46 (m, 6H, Ar*H*), 7.06 - 7.03 (d, *J* = 8.6 Hz 1H, Ar*H*), 6.76 - 6.74 (d, *J* = 8.67 Hz 1H, Ar*H*), 4.7 (s, 2H, C*H*₂), 3.64 (s,

3H, OC*H*₃), 2.94 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 159.6, 132.1, 127.3, 122.8, 114.6, 83.4, 75.6, 55.5, 54.2, 49.6, 23.9, 19.8, 18.05, 17.3 ppm.

Isolated yield (**3v**) (110.4 mg, 86%). ¹H NMR (400 MHz, DMSO-d₆): δ 7.51 - 7.45 (m, 4H, Ar*H*), 7.44 - 7.42 (m, 1H, Ar*H*), 7.28 - 7.26 (m, 1H, Ar*H*), 7.14 - 7.10 (m, 1H, Ar*H*), 7.01 - 6.99 (m, 1H, Ar*H*), 3.34 (s, 2H, C*H*₂), 2.91 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 137.3, 130.6, 128.3, 116.8, 122.0, 114.7, 81.9, 36.1, 24.3 ppm.

Isolated yield (**3w**) (133.2 mg, 89%). ¹H NMR (400 MHz, D₂O): δ 7.44 - 7.41 (m, 3H, Ar*H*), 7.36 – 7.34 (m, 3H, Ar*H*), 7.25 – 7.16 (m, 1H, Ar*H*), 7.02 – 7.0 (m, 1H, Ar*H*), 3.23 (s, 2H, C*H*₂), 2.96 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 136.3, 132.4, 130.4, 129.7, 121.7, 75.6, 63.0, 43.9, 36.9, 23.7 ppm.

Isolated yield (**3x**) (128.2 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 7.43 - 7.40 (m, 3H, Ar*H*), 7.35 - 7.32 (m, 3H, Ar*H*), 7.22 - 7.21 (m, 1H, Ar*H*), 6.94 - 6.92 (m, 1H, Ar*H*), 3.22 (s, 2H, C*H*₂), 2.94 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 130.3, 129.8, 121.7, 83.9, 75.6, 36.9, 23.7 ppm.

Isolated yield (**3y**) (142.3 mg, 92%). ¹H NMR (400 MHz, D₂O): δ 7.46 - 7.41 (m, 3H, Ar*H*), 7.36 - 7.34 (m, 3H, Ar*H*), 7.25 - 7.23 (m, 1H, Ar*H*), 7.18 - 7.16 (m, 1H, Ar*H*), 7.02 - 7.00 (m, 1H, Ar*H*), 3.23 (s, 2H, C*H*₂), 2.96 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 132.6, 131.9 130.6, 129.8, 121.7, 121.4, 75.4, 36.8, 23.7 ppm.

Isolated yield (**3z**) (136.2 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 7.20 - 7.09 (m, 4H, Ar*H*), 4.09 (s, 2H, *CH*₂), 3.35 - 3.31 (q, 2H, *CH*₃). 3.11 – 3.08 (q, 2H, *CH*₃), 2.20 (s, 3H, *CH*₃), 1.20 - 1.13 (t, 3H, *CH*₃). 0.94 – 0.89 (t, 3H, *CH*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 140.3, 132.7, 129.9, 125.9, 83.0, 75.6, 46.6, 44.3, 40.0, 23.9, 20.5, 13.6, 12.3 ppm.

Isolated yield (**3za**) (145.6 mg, 94%). ¹H NMR (400 MHz, D₂O): δ 7.27 - 7.25 (d, *J* = 8.1 Hz, 2H, Ar*H*), 7.20 - 7.18 (d, *J* = 8.0 Hz, 2H, Ar*H*), 4.17 (s, 2H, C*H*₂). 3.67 - 3.64 (m, 2H, C*H*), 2.23 (s, 3H, C*H*₃), 1.31 - 1.29 (d, *J* = 6.7 Hz, 6H C*H*₃), 1.25 - 1.23 (d, *J* = 6.7 Hz, 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 140.3, 130.4, 129.7, 125.9, 83.9, 75.6, 54.6, 44.3, 40.0, 23.9, 20.3, 17.9,17.2 ppm.

Isolated yield (**3zb**) (140.3 mg, 94%). ¹H NMR (400 MHz, D₂O): δ 7.46 - 7.42 (m, 2H, Ar*H*), 7.39 - 7.35 (m, 3H, Ar*H*), 7.27 - 7.25 (m, 1H, Ar*H*), 7.01 - 6.94 (m, 4H, Ar*H*), 3.22 (s, 2H, C*H*₂), 2.97 (s, 3H, C*H*₃), 2.12 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 172.0, 130.5, 130.3, 129.5,121.9, 121.6, 83.0, 75.6, 37.1, 23.9, 20.5 ppm.

Isolated yield (**4a**) (91.3 mg, 86%). ¹H NMR (400 MHz, D₂O): δ 7.38 - 7.37 (d, *J* = 8.6 Hz, 1H, Ar*H*), 7.20 - 7.18 (d, *J* = 8.6 Hz 1H, Ar*H*), 4.02 (s, 2H, C*H*₂), 3.28 - 3.26 (q, 2H, C*H*₃), 3.02 - 2.97 (q, 2H, C*H*₃), 1.10 - 1.07 (t, 3H, C*H*₃). 0.86 - 0.82 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 172.3, 136.3, 134.0, 129.3, 126.9, 83.6, 75.6, 55.5, 44.4, 42.7, 40.1, 23.9, 13.6,12.3 ppm.

Isolated yield (**4b**) (125.4 mg, 88%). ¹H NMR (400 MHz, D₂O): δ 7.14 - 7.69 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.37 - 7.35 (d, *J* = 8.0 Hz, 1H, Ar*H*), 4.19 (s, 2H, C*H*₂), 3.74 - 3.65 (s, 2H, C*H*), 1.44 - 1.43 (d, *J* = 6.8 Hz, 6H, C*H*₃), 1.11 - 1.09 (d, *J* = 6.8 Hz, 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 138.2, 133.6, 129.4, 126.0, 83.9, 75.7, 52.3, 46.1, 42.8, 23.9, 19.8 ppm.

Isolated yield (**4c**) (107.6 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 7.51 - 7.49 (d, 2H, Ar*H*), 6.92 – 6.90 (d, *J* = 8.6 Hz 1H, Ar*H*), 4.37 (s, 2H, C*H*₂), 3.74 (s, 2H, C*H*₂), 2.97 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 159.9, 128.3, 127.9, 114.0, 75.6, 55.5, 44.4, 40.1, 23.9, 19.8, 13.6, 12.3 ppm.

Isolated yield (**4d**) (124.9 mg, 88%). ¹H NMR (400 MHz, D₂O): δ 7.98 - 7.95 (d, *J* = 8.6 Hz 1H, Ar*H*), 7.39 - 7.37 (d, *J* = 7.8 Hz 1H, Ar*H*), 4.29 (s, 2H, C*H*₂), 3.28 - 3.26 (q, 2H, C*H*₃). 3.02 - 2.97 (q, 2H, C*H*₃), 1.10 - 1.07 (t, 3H, C*H*₃). 0.86 - 0.82 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 169.9, 130.9, 130.4, 129.3, 126.1, 75.6, 63.3, 55.2, 52.7, 46.9, 44.1, 40.1, 23.9, 13.0, 11.9, 8.0 ppm.

Isolated yield (**4e**) (126.6 mg, 90%). ¹H NMR (400 MHz, D₂O): δ 7.90 - 7.88 (m, 1H, Ar*H*), 7.49 - 7.47 (m,1H, Ar*H*), 7.37 - 7.32 (m, 2H, Ar*H*), 7.21 - 7.20 (m, 1H, Ar*H*), 4.29 (s, 2H, C*H*₂), 3.81 (s, 3H, OC*H*₃), 3.69 - 3.67 (m, 1H, C*H*), 3.10 - 3.04 (m, 1H, C*H*), 1.35 - 1.31 (d, *J* = 6.7 Hz, 6H, C*H*₃), 1.26 - 1.24 (d, *J* = 6.6 Hz, 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 130.7, 130.4, 127.8, 125.3, 83.9, 75.6, 63.3, 54.9, 52.7, 46.9, 44.6, 23.9, 19.7, 17.9, 17.1 ppm.

Isolated yield (**4f**) (135.4 mg, 94%). ¹H NMR (400 MHz, D₂O): δ 7.70 - 7.68 (d, *J* = 8.3 Hz 1H, Ar*H*), 7.44 - 7.38 (m, 3H, Ar*H*), 7.34 - 7.28 (m, 3H, Ar*H*), 7.28 - 7.20 (m, 2H, Ar*H*), 7.22 - 7.14 (m, 3H, Ar*H*), 4.66 (s, 2H, C*H*₂), 3.22 (s, 3H, OC*H*₃), 2.97 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 169.9, 142.5, 138.9, 136.4, 130.4, 129.3, 127.4, 126.1, 83.7, 75.6, 63.3, 57.2, 52.5, 46.9, 23.9, 8.4 ppm.

Isolated yield (**4g**) (94.05 mg, 80%). ¹H NMR (400 MHz, D₂O): δ 7.92 - 7.90 (d, *J* = 6.8 Hz, 2H, Ar*H*), 7.24 - 7.12 (m,2H, Ar*H*), 4.10 (s, 2H, C*H*₂), 3.16 - 3.11 (m, 2H, C*H*₂), 2.90 - 2.85 (m, 2H, C*H*₂), 0.86 - 0.81 (t, 3H, C*H*₃). 0.72 - 0.69 (t, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 135.9, 130.3, 129.7, 121.7, 83.5 75.4, 63.5, 44.3, 37.1, 23.9 ppm.

Isolated yield (**4h**) (112.05 mg, 84%). ¹H NMR (400 MHz, D₂O): δ 7.72 - 7.70 (d, *J* = 8.3 Hz 2H, Ar*H*), 7.12 -7.10 (d, *J* = 8 Hz 2H, Ar*H*), 4.15 (s, 2H, C*H*₂), 3.66 - 3.62 (m, 1H, C*H*), 3.06 - 3.01 (m, 1H, C*H*), 1.27 - 1.21 (d, *J* = 6.7 Hz 6H, C*H*₃), 1.21 - 1.19 (d, *J* = 6.6 Hz 6H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 137.2, 130.5, 126.9, 123.8, 83.4, 75.4, 52.7, 46.9, 23.9, 13.0, 19.7 ppm.

Isolated yield (**4i**) (117.6 mg, 86%). ¹H NMR (400 MHz, D₂O): δ 7.76 - 7.73 (d, *J* = 8.6 Hz, 1H, Ar*H*), 7.28 - 7.18 (m, 5H, Ar*H*), 7.06 - 6.99 (m, 4H, Ar*H*), 6.95 - 6.86 (m, 2H, Ar*H*), 4.67 (s, 2H, C*H*₂), 3.13 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, D₂O): δ 147.9, 138.7, 135.0, 132.1, 130.3, 129.8, 126.8, 122.9, 121.7, 83.5, 75.4, 61.7, 45.1, 38.1, 37.0, 23.9 ppm.

Figure FS15. ¹H NMR spectra of compound (3b).

Figure FS17. ¹³C -DEPT NMR spectra of compound (3b).

Figure FS18. ¹H NMR spectra of compound (3c).

Figure FS19. ¹³C NMR spectra of compound (3c).

Figure FS20. ¹³C -DEPT NMR spectra of compound (3b).

Figure FS21. ¹H NMR spectra of compound (3d).

Figure FS23. ¹³C NMR spectra of compound (3d).

Figure FS24. ¹³C-DEPT NMR spectra of compound (3d).

Figure FS25. ¹H NMR spectra of compound (3e).

Figure FS26. ¹³C NMR spectra of compound (3e).

Figure FS27. ¹³C-DEPT NMR spectra of compound (3e).

Figure FS28. ¹H NMR spectra of compound (3f).

Figure FS29. ¹³C NMR spectra of compound (3e).

Figure FS30. ¹³C-DEPT NMR spectra of compound (3e).

Figure FS31. ¹H NMR spectra of compound (3g).

Figure FS33. ¹³C-DEPT NMR spectra of compound (3g).

Figure FS34. ¹H NMR spectra of compound (3h).

Figure FS35. ¹³C NMR spectra of compound (3h).

Figure FS37. ¹H NMR spectra of compound (3i).

Figure FS39. ¹³C- DEPT NMR spectra of compound (3i).

Figure FS41. ¹³C NMR spectra of compound (3i).

Figure FS42. ¹³C- DEPT NMR spectra of compound (3i).

Figure FS43. ¹H NMR spectra of compound (3k).

Figure FS44. ¹³C NMR spectra of compound (3k).

Figure FS45. ¹³C-DEPT NMR spectra of compound (3k).

Figure FS46. ¹H NMR spectra of compound (31).

Figure FS47. ¹³C NMR spectra of compound (31).

Figure FS48. ¹³C- DEPT NMR spectra of compound (31).

Figure FS49. ¹H NMR spectra of compound (3m).

Figure FS50. ¹³C NMR spectra of compound (3m).

Figure FS51. ¹³C –DEPT NMR spectra of compound (3m).

Figure FS52. ¹HNMR spectra of compound (3n).

Figure FS53. ¹³C NMR spectra of compound (3n).

Figure FS54. ¹³C-DEPT NMR spectra of compound (3n).

Figure FS55. ¹H NMR spectra of compound (30).

Figure FS57. ¹³C-DEPT NMR spectra of compound (30).

Figure FS58. ¹H NMR spectra of compound (3p).

Figure FS60. ¹³C-DEPT NMR spectra of compound (3p).

Figure FS61. ¹H NMR spectra of compound (3q).

Figure FS62. ¹³C NMR spectra of compound (3q).

Figure FS63. ¹³C-DEPT NMR spectra of compound (3q).

Figure FS64. ¹H NMR spectra of compound (3r).

Figure FS65. ¹³C NMR spectra of compound (3r).

Figure FS66. ¹³C- DEPT NMR spectra of compound (3r).

Figure FS67. ¹H NMR spectra of compound (3s).

Figure FS68. ¹³C NMR spectra of compound (3s).

Figure FS69. ¹³C-DEPT NMR spectra of compound (3s).

Figure FS70. ¹H NMR spectra of compound (3t).

Figure FS71. ¹³C NMR spectra of compound (3t).

Figure FS72. ¹³C-DEPT NMR spectra of compound (3t).

Figure FS73. ¹H NMR spectra of compound (3u).

Figure FS75. ¹³C-DEPT NMR spectra of compound (3u).

Figure FS77. ¹³C NMR spectra of compound (3v).

Figure FS79. ¹³C NMR spectra of compound (3w).

Figure FS80. ¹³C-DEPT NMR spectra of compound (3w).

Figure FS81. ¹H NMR spectra of compound (3x).

Figure FS82. ¹³C NMR spectra of compound (3x).

Figure FS83. ¹³C-DEPT NMR spectra of compound (3x).

Figure FS84. ¹H NMR spectra of compound (3y).

Figure FS85. ¹³C NMR spectra of compound (3y).

Figure FS86. ¹³C NMR spectra of compound (3y).

Figure FS87. ¹H NMR spectra of compound (3z).

Figure FS88. ¹³C NMR spectra of compound (3z).

Figure FS89. ¹³C-DEPT NMR spectra of compound (3z).

Figure FS90. ¹H NMR spectra of compound (3za).

Figure FS91. ¹³C NMR spectra of compound (3za).

Figure FS92. ¹³C-DEPT NMR spectra of compound (3za).

Figure FS93. ¹H NMR spectra of compound (3zb).

Figure FS94. ¹³C NMR spectra of compound (3zb).

Figure FS95. ¹³C-DEPT NMR spectra of compound (3zb).

Figure FS96. ¹H NMR spectra of compound (4a).

Figure FS97. ¹³C NMR spectra of compound (4a).

Figure FS98. ¹³C-DEPT NMR spectra of compound (4a).

Figure FS99. ¹H NMR spectra of compound (4b).

Figure FS100. ¹³C NMR spectra of compound (4b).

Figure FS101. ¹³C-DEPT spectra of compound (4b).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure FS103. ¹³C NMR spectra of compound (4c).

Figure FS104. ¹³C-DEPT NMR spectra of compound (4c).

Figure FS105. ¹H NMR spectra of compound (4d).

Figure FS106. ¹³C NMR spectra of compound (4d).

Figure FS107. ¹³C-DEPT NMR spectra of compound (4d).

Figure FS108. ¹H NMR spectra of compound (4e).

Figure FS109. ¹³C NMR spectra of compound (4e).

Figure FS110. ¹³C-DEPT NMR spectra of compound (4e).

Figure FS111. ¹H NMR spectra of compound (4f).

Figure FS113. ¹³C-DEPT NMR spectra of compound (4f).

Figure FS114. ¹H NMR spectra of compound (4g).

Figure FS115. ¹³C NMR spectra of compound (4g).

Figure FS116. ¹³C-DEPT NMR spectra of compound (4g).

Figure FS117. ¹H NMR spectra of compound (4h).

Figure FS119. ¹³C-DEPT NMR spectra of compound (4h).

Figure FS120. ¹H NMR spectra of compound (4i).

Figure FS121. ¹³C NMR spectra of compound (4i).

Figure FS122. ¹³C- DEPT NMR spectra of compound (4i).

Kinetic studies

Typical NMR-Scale Reaction for determining Kinetic Study by ¹H-NMR Arrays.

In a glove box, the respective amount of complex **2b** (0.001, 0.0015, 0.002, 0.025, 0.03 M), N,Ndimethyl benzamide (7.4 mg, 0.05 M), HBpin (12.8 mg, 0.1 M), and the internal standard, hexamethylbenzene (8.0 mg, 0.05 M), were added in a vial and after that C_6D_6 (1 mL) was added to these reaction mixture. From this stock solution, 0.5 mL aliquot was taken out and it was added to rubber septum-sealed NMR tube, wrapped with parafilm, and removed from the box. The solution was set in the NMR tube at 60°C. After that, the tube was shaken and reinserted into the instrument again and scanning was begun. Single (¹H NMR) scans were collected at regular intervals. Substrate and/or product concentrations were determined relative to the intensity of the internal standard resonance plotted versus time.

Kinetic Analysis. Kinetic analysis of the NMR-scale reactions described above was carried out by collecting multiple (>10) data points early in the reaction (<20% conversion). Under these conditions, the reaction can be approximated as pseudo-zero-order with respect to the substrate

concentrations. The product concentration was measured from the area of the $C_6H_4CH_2NMe_2$ peak formed with respect to their starting material peak standardized to the methyl peak area of the C_6Me_6 internal standard.

General Procedure for Kinetic NMR Experiments.

As expected, plots of ln[PhCONMe₂]/ln[PhCONMe₂]₀ vs. time for a wide range of catalyst $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$ are linear (Figure FS120, Table S2). A plot of k_{obs} vs. $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$ (Figure FS121, Table S3) is also linear, with slope 0.8 which indicate the rate law of the reaction follow first order dependence with respect to catalyst $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$. The same experiment also conducted varying wide range of concentration of $[PhCONMe_2]/(0.03-0.07 \text{ M})$ and HBpin (0.1-0.5 M) which were also linear and follows first-order dependence with respect to $[PhCONMe_2]$ and HBpin (Figure FS123, Table S4, Figure FS125, Table S4).

Table TS2. Table for formation rates of $C_6H_4CH_2NMe_2$ vs time at various concentration of catalyst $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$ (**2b**).

S.No	[PhCONMe ₂]/ Cat	Time (h:m)	Conversion ^a	[PhCONMe ₂] ^t	ln([PhCONMe ₂] _t /[PhCONMe ₂] ₀)
		(11.111)	(/0)		
1	100/2	00.00	0	0	0
2	100/2	01.00	23	0.0385	261
3	100/2	02.00	35	0.0325	430
4	100/2	03.00	44	0.028	579
5	100/2	04.00	52	0.024	734
6	100/2	05.00	61	0.0195	-0.942
7	100/2	06.00	70	0.015	-1.20
8	100/2	07.00	73	0.0135	-1.31
9	100/3	00.00	0	0	0
10	100/3	01.00	25	0.0379	-0.277
11	100/3	02.00	42	0.029	-0.534
12	100/3	03.00	55	0.0227	-0.788
13	100/3	04.00	64	0.0182	-1.01
14	100/3	05.00	72	0.0139	-1.28
15	100/3	06.00	81	0.00105	-1.56
16	100/3	07.00	88	0.0066	-2.02
17	100/4	00.00	0	0	0
18	100/4	01.00	27.5	0.0362	-0.322

19	100/4	02.00	46	0.027	-0.616
20	100/4	03.00	62.5	0.01875	-0.975
21	100/4	04.00	70	0.015	-1.20
22	100/4	05.00	80	0.010	-1.61
23	100/4	06.00	87	0.0065	-2.04
24	100/4	07.00	91	0.0045	-2.41
25	100/5	00.00	0	0	0
26	100/5	01.00	29	0.0355	-0.342
27	100/5	02.00	48	0.026	-0.654
28	100/5	03.00	64	0.018	-1.02
29	100/5	04.00	74	0.013	-1.35
30	100/5	05.00	84	0.008	-1.83
31	100/5	06.00	89.5	0.00525	-2.25
32	100/5	07.00	93	0.0035	-2.66
33	100/6	00.00	0	0	0
34	100/6	01.00	24	0.0379	-0.473
35	100/6	02.00	60	0.0197	-0.93
36	100/6	03.00	73	0.0136	-1.3
37	100/6	04.00	81	0.0095	-1.66
38	100/6	05.00	88	0.0058	-2.15
39	100/6	06.00	93	0.0035	-2.65
40	100/6	07.00	95	0.0024	-2.98

-2.0

-2.5

-3.0 -

0

100

200

Time (m)

-0.00309x + 0.034, R= 0.98

-0.00451x +0.034, R= 0.99 -0.00569x +0.047, R= 0.99 -0.00635x -0.071, R= 0.98

-0.0071 x -0.075, R= 0.99

у

500

300

400

Table TS3. Table for formation rates of $C_6H_4CH_2NMe_2$ vs $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$ for the reaction of $[PhCONMe_2]$ with [HBpin] in presence of catalyst (1) $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$. Reaction conditions: [HBpin] = 0.1 M and $[PhCONMe_2] = 0.05$ M, $[Ph_2P(Se)NC_9H_6NAl(Me)_2] = [1$ mM to 3 mM] in C_6D_6 (0.5 mL).

	reods
0.001	0.00309
0.0015	0.0045
0.002	0.00569
0.0025	0.00635
0.003	0.0071
ln[Ph ₂ P(Se)NC ₉ H ₆ NAl(Me) ₂]	lnk _{obs}
-6.90	-5.77
-6.50	-5.4
-6.21	-5.16
-5.99	-5.05
F 01	1.0.1
	0.001 0.0015 0.002 0.0025 0.003 In[Ph₂P(Se)NC₉H₆NAl(Me)₂] -6.90 -6.50 -6.21 -5.99

Figure FS124. Kinetics plots of $\ln k_{obs}$ vs $\ln[Ph_2P(Se)NC_9H_6NAl(Me)_2]$ for the reaction of $[PhCONMe_2]$ with [HBpin] in presence of catalyst (**2b**) $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$ Reaction conditions: [HBpin] = 0.1 M and $[PhCONMe_2] = 0.05 \text{ M}$, $[Ph_2P(Se)NC_9H_6NAl(Me)_2] = [1 \text{ mM to } 3 \text{ mM}]$ in C_6D_6 (0.4 mL).

Table TS4. Table for Formation rates of $C_6H_4CH_2NMe_2$ versus the ratios of $PhCONMe_2 / HBPin$ in C_6D_6 at 298 K, indicating a linear dependence. Conditions: $Ph_2P(Se)NC_9H_6NAl(Me)_2 = 0.0020(M)$, [HBPin] = 0.1 M and [PhCONMe_2] [0.03 M to 0.07 M] in C_6D_6 (0.4 mL).

S.NO.	[PhCONMe ₂] x 10 ⁻¹	Kobs
1	0.3	0.0094
2	0.4	0.0151
3	0.5	0.0185
4	0.6	0.0215
5	0.7	0.0262

S.NO.	ln[PhCONMe ₂]	lnk _{obs}
1	-3.51	-4.65
2	-3.21	-4.19
3	-2.99	-3.98
4	-2.81	-3.84
5	-2.65	-3.63

Figure FS125. Kinetics plots of k_{obs} vs [PhCONMe₂] for the reaction of [PhCONMe₂] with [HBpin] in presence of catalyst (**2b**) [Ph₂P(Se)NC₉H₆NAl(Me)₂]. Reaction conditions: Ph₂P(Se)NC₉H₆NAl(Me)₂] = 0.002 (M), [HBpin] = 0.1 M and [PhCONMe₂] [0.003 M to 0.007 M] in C₆D₆ (0.4 mL).

Figure FS126. Kinetics plots of $\ln k_{obs}$ vs $\ln[PhCONMe_2]$ for the reaction of $[PhCONMe_2]$ with [HBpin] in presence of catalyst (**2b**) $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$. Reaction conditions: $Ph_2P(Se)NC_9H_6NAl(Me)_2] = 0.002$ (M), [HBpin] = 0.1 M and [PhCONMe_2] [0.03 M to 0.07 M] in C₆D₆ (0.4 mL).

Table TS5. Table for Formation rates of $C_6H_4CH_2NMe_2$ versus the ratios of PhCONMe₂ / HBpin in C_6D_6 at 60°C, indicating a linear dependence. Conditions: $[Ph_2P(Se)NC_9H_6NAl(Me)_2] = 0.002(M)$, $[PhCONMe_2] = 0.05 \text{ M}$ and [HBpin] [0.1 M to 0.5 M] in C_6D_6 (0.4 mL).

S.NO.	[HBpin]	k _{obs}
1	0.1	0.011
2	0.2	0.0141
3	0.3	0.0195
4	0.4	0.0225
5	0.5	0.0249

S.NO.	ln[HBpin]	In k_{obs}
1	-2.30	-4.51
2	-1.61	-4.2
3	-1.203	-3.94
4	-0.916	-3.79
5	-0.693	-3.69

Figure FS127. Kinetics plots of k_{obs} vs [HBpin] for the reaction of [PhCONMe₂] with [HBpin] in presence of catalyst (**2b**) [Ph₂P(Se)NC₉H₆NAl(Me)₂]. Reaction conditions: Ph₂P(Se)NC₉H₆NAl(Me)₂] = 0.02 (M), [PhCONMe₂] = 0.05 M and [HBpin] = 0.1 M to 0.5 M] in C₆D₆ (0.4 mL).

Figure FS128. Kinetics plots of lnk_{obs} vs ln[HBpin] for the reaction of $[PhCONMe_2]$ with [HBpin] in presence of catalyst (**2b**) $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$. Reaction conditions: $[Ph_2P(Se)NC_9H_6NAl(Me)_2]$. = 0.002 (M), $[PhCONMe_2] = 0.05$ M and [HBpin] = 0.1 M to 0.5 M] in C₆D₆ (0.4 mL).

Figure FS129 : ¹H NMR spectrum of N, N dimethylbenzamide + HBpin + aluminium complex (2a) (1:1:1) reaction mixture in Tol-d₈ solvent.

Figure FS130. ¹³C NMR spectrum of N, N dimethylbenzamide + HBpin + aluminium complex (**2a**) (1:1:1) reaction mixture in Tol-d₈ solvent.

Figure FS131. ¹¹B NMR spectrum of N, N dimethylbenzamide + HBpin + aluminium complex (2a) (1:1:1) reaction mixture in Tol-d₈ solvent.

Figure FS132. ³¹P NMR spectrum of N, N dimethylbenzamide + HBpin + aluminium complex (2a) (1:1:1) reaction mixture in Tol-d₈ solvent.

Figure FS133. ¹H NMR spectrum of aluminium complex (**2a**) and HBpin (1:1) reaction mixture in Tol-d₈ solvent.

Figure FS134. ³¹P NMR spectrum of aluminium complex (2a) and HBpin (1:1) reaction mixture in Tol d_8 solvent.

Figure FS135. ¹³C NMR spectrum of aluminium complex (2a) and HBpin (1:1) reaction mixture in Tol d_8 solvent.

Figure FS136. ¹¹B NMR spectrum of aluminium complex (2a) and HBpin (1:1) reaction mixture in Tol d_8 solvent.

References.

- (a) A. Altomare, M. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1993, *26*, 343;
 (b) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 2005, *38*, 381.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
- 3. N. Sakai, K. Fuhji and T. Konakahara, Tetrahedron Lett. 2008, 49, 6873-6875.
- 4. M. Igarashi and T. Fuchikami, Tetrahedron Lett. 2001, 42, 1945.
- D. L. Dodds, and D. J. Cole-Hamilton, In Sustainable Catalysis; Wiley: Hoboken, NJ, 2013; pp 1-36.
- 6. H. C. Brown, Hydroboration. W. A. Benjamin: New York, 1962.
- 7. S. Hanada, Y. Motoyama and H. Nagashima, *Tetrahedron Lett.* 2006, 47, 6173.
- 8. M. Igarashi and T. Fuchikami, Tetrahedron Lett. 2001, 42, 1945.