Electronic Supplementary Information

$SrPt_3In_2$ – An orthorhombically distorted coloring variant of $SrIn_5$

Ihor R. Muts,^a Viktor Hlukhyy,^b Yaroslav V. Galadzhun,^a Pavlo Solokha,^c Stefan Seidel,^d Rolf-Dieter Hoffmann,^d Rainer Pöttgen^{d, *} and Vasyl^c I. Zaremba^{e, *}

- ^a Department of Life Safety, Ivan Franko National University of Lviv, Doroshenka Street 41, 79000 Lviv, Ukraine
- ^b Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
- ^c Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
- ^d Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany. E-mail: pottgen@uni-muenster.de; Fax: +49 251-83-36002
- ^e Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

Figure 1S. Total and projected DOS for $SrIn_5(a)$; cumulative COHP curves for different interactions: In–In interactions (*b*); Sr–In interactions (*c*).

Figure 2S. Total and projected DOS for $SrPt_5(a)$; cumulative COHP curves for different interactions: Pt–Pt interactions (*b*); Sr–Pt interactions (*c*).

Table. Selected bond distances and corresponding -ICOHP (eV/bond) as integrated up to E_F for SrIn₅ and SrPt₅ together with a contribution of each type of interactions to the total bonding population per cell.

#1	#2	Dist (Å)	eV/bond	mult	eV/cell	%
SrIn ₅						
In1–	In2 (4x)	2.960	1.03	3	12.36	35.6
	In1 (4x)	2.968	1.10	3	13.2	38.0
In2–	In2 (3x)	3.428	0.39	2	2.34	6.7
					$\Sigma =$	80.4
Sr-	In2 (6x)	3.428	0.47	1	2.82	8.1
	In1 (12x)	3.826	0.33	1	3.96	11.4
					$\Sigma =$	19.6
SrPt ₅						
Pt1-	Pt2 (4x)	2.681	1.76	3	21.12	40.4
	Pt1 (4x)	2.698	1.76	3	21.12	40.4
Pt2-	Pt2 (3x)	3.116	0.58	2	3.48	6.7
					$\Sigma =$	87.6
Sr-	Pt2 (6x)	3.116	0.46	1	2.76	5.2
	Pt1 (12x)	3.470	0.31	1	3.72	7.1
					$\Sigma =$	12.4

Figure 3S. (*a*) ELF plane sections representing the first coordination sphere of Sr2 and Sr1, respectively together with ELF isosurfaces ($\eta = 0.8$) within the [Pt₃In₂] framework. For a comparative goal, the analogous ELF isosurfaces for SrPt₅ and SrIn₅ are shown in *b*). A partial fragment shown by dotted line includes all crystallographically independent sites of Pt and In for chosen compounds (for more details see main text).