Supporting Information

Copper(I) iodide cluster-based lanthanide organic frameworks: synthesis and application as efficient catalysts for carboxylative cyclization of propargyl alcohols with CO₂ under mild conditions

Zhilei Wu,^{ab} Xingwang Lan, ^{ab*} Yaxin Zhang,^a Meng Li,^a Guoyi Bai^{a*}

^aKey Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China.

^bKey Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University Weijin Road 92, Tianjin, 300072, P.R.China.

	1	2
Formula	$C_{21}H_8Cu_2DyI_2N_4O_7\\$	$C_{63}H_{80}Cu_2Gd_2I_2N_{15}O_{21}$
Fw	971.69	2078.80
T/K	150(2)	150(2)
Cryst syst	Tetragonal	Triclinic
Space group	I-42 <i>d</i>	<i>P</i> -1
a/Å	25.3670(4)	12.9904(5)
$b/{ m \AA}$	25.3670(4)	13.0609(5)
$c/\text{\AA}^3$	9.0667(2)	13.4710(6)
<i>α</i> /°	90	65.919(2)
$eta / ^{\circ}$	90	86.020(2)
γ/°	90	82.341(2)
Volume/Å	7818.5(11)	2067.76(15)
Z	8	1
$\rho_{calc}mg/mm^3$	2.212	1.669
μ/mm^{-1}	6.139	2.910
<i>F</i> (000)	3584	1023
$ heta/\circ$	2.539 to 26.378	2.198 to 25.010
Reflections collected	41594	30167
Unique reflns	2980 [R _{int} =0.0502]	7290 [R _{int} =0.0571]
GOF on F^2	1.087	1.054
$R_1, WR_2 (I \ge 2\sigma(I))$	0.0294, 0.0635	0.0304, 0.0610
R_1 , w R_2 (all data)	0.0322, 0.0647	0.0509, 0.0679

Table S1 Crystallographic data and structure refinements for compounds 1 and 2.

	HO + CO ₂ - (balloon)	CH ₃ CN, rt.	
Entry	Catalyst	Base	Yield ^b (%)
1	Dy ₂ O ₃	DBU	<1
2	Gd_2O_3	DBU	3
3	compound 1	Et ₃ N	Trace
4	compound 1	K_2CO_3	0
5	compound 1	Cs ₂ CO ₃	Trace

Table S2. Carboxylative cyclization of propargyl alcohol with CO2.^a

^{*a*}Reaction conditions: 2-methyl-3-butyn-2-ol (0.6 mmol), catalyst (30 mg), base (1.0 equiv.), CH₃CN (3 mL), CO₂ (balloon), 5 h, room temperature. ^{*b*} Determined by GC.

Figure. S1 N_2 sorption isotherm of compound 1 at 77 K.

Figure. S2 The TGA curve for compound 1.

Figure. S3 The TGA curve for compound 2.

Figure. S4 The PXRD patterns of Gd-MOF and Dy-MOF.

Figure. S5 The kinetic study for compounds 1 and 2 in the reactions.

Figure. S6 Perspective view of the framework of 1 along c direction (left) and the size of 2-methyl-3-butyn-2-ol.

Figure. S7 Perspective view of the framework of **1** along a direction (left) and b direction (right), respectively.

Figure. S8 The XPS spectra of Cu(I) and Cu(II) in the reused 1.

Characterization Data of All Products

4,4-Dimethyl-5-methylene-1,3-dioxolan-2-one (2a):

4-Ethyl-4-methyl-5-methylene-1,3-dioxolan-2-one(2b)

Colorless oil liquid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) : 4.82 (d, J = 3.60 Hz, 1H), 4.28 (d, J = 3.60 Hz, 1H), 1.95-1.89 (m, 1H), 1.80-1.74 (m, 1H), 1.59 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 157.45, 151.53, 87.57, 85.54, 33.38, 25.93, 7.30. GC-MS calcd. for C₇H₁₀O₃ 142.06, found 142.08.

4,4-Diethyl-5-methylene-1,3-dioxolan-2-one (2c)

Colorless oil liquid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) : 4.87 (d, J = 4.2 Hz, 1H), 4.23 (d, J = 4.20 Hz, 1H), 1.97-1.91 (m, 2H), 1.75-1.69 (m, 2H), 0.98 (t, J = 7.20 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) : 155.81, 151.85, 90.83, 85.78, 31.90, 7.10. GC-MS calcd. for C₈H₁₂O₃ 156.08, found 156.13.

4-Isopropyl-4-methyl-5-methylene-1,3-dioxolan-2-one (2d)

Colorless oil liquid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) : 4.82 (d, J = 4.20 Hz, 1H), 4.28 (d, J = 3.60 Hz, 1H), 1.97-1.93 (m, 1H), 1.58 (s, 3H), 1.03 (d, J = 7.20 Hz, 3H), 1.00 (d, J = 6.60 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 157.13, 151.68, 89.80, 86.17, 36.96, 24.00, 16.31, 16.01. GC-MS calcd. for C₈H₁₂O₃ 156.08, found 156.13.

4-Isobutyl-4-methyl-5-methylene-1,3-dioxolan-2-one (2e)

Colorless oil liquid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) : 4.79 (d, J = 1.80 Hz, 1H), 4.27 (d, J = 1.80, 1H), 1.85-1.79 (m, 2H), 1.68-1.65 (m, 1H), 1.58 (s, 2H), 0.97 (dd, $J_I = 6.60$ Hz, $J_2 = 4.20$ Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 158.34, 151.45, 87.32, 85.55, 48.53, 27.00, 24.28, 23.96, 23.66. GC-MS calcd. for

 $C_9H_{14}O_3$ 170.09, found 170.08.

4-Methylene-1,3-dioxaspiro[4.5]decan-2-one (2f)

Colorless oil liquid. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 4.76 (d, J = 3.00 Hz, 1H), 4.28 (d, J = 3.60 Hz, 1H), 2.0 (d, J = 4.80 Hz, 2H), 1.74-1.59 (m, 7H), 1.34-1.25 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 158.78, 151.48, 86.38, 85.46, 36.53, 24.37, 21.62. GC-MS calcd. for C₉H₁₂O₃ 168.08, found 168.06.

4-Methylene-1,3-dioxaspiro[4.4]nonan-2-one (2g)

Colorless oil liquid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) : 4.79 (d, J = 4.20 Hz, 1H), 4.33 (d, J = 4.20 Hz, 1H), 2.26-2.22 (m, 2H), 1.95-1.83 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) : 157.82, 151.47, 94.20, 85.30, 40.66, 24.26. GC-MS calcd. for C₈H₁₀O₃ 154.06, found 154.03

Copies of NMR Spectra of All Products

¹³C NMR spectrum of product *2a*

¹³C NMR spectrum of product 2g

Copies of MS Spectra of All Products

MS spectrum of product 3a

MS spectrum of product *3b*

MS spectrum of product 3d

MS spectrum of product 3g