

PAPER

View Article Online View Journal | View Issue

Copper(II) complexes with 2,2':6',2"-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, cytotoxicity, and catalytic activity in oxidation of alkanes with peroxides

Katarzyna Choroba,^a Barbara Machura,^{*a} Slawomir Kula,^a Luis R. Raposo,^b Alexandra R. Fernandes,^{*b} Rafal Kruszynski,^c Karol Erfurt,^d Lidia S. Shul'pina,^a Yuriy N. Kozlov ^{f,e} and Georgiy B. Shul'pin ^{*f,g,h}

Electronic Supplementary Information (ESI)

Figures	
HRMS of complexes 1-6	Figure S1
IR spectra of complexes 1-6 and respective ligands	Figure S2
UV-Vis spectra of complexes 1-6 in methanol	Figure S3
UV-Vis spectral stability of the complexes 1-6 in methanol	Figure S4
UV-Vis spectral stability of complexes 2 and 5 in DMSO and DMEM	Figure S5
View of the supramolecular packing of complexes 1-6	Figure S6
Cytotoxicity of n-quinolyl-terpy, n-quinolyl-dtpy and n-quinolyl-dppy ligands	Figure S7
Production of reactive oxygen species in HCT116 cells exposed to IC_{50}	Figure S8
concentrations of 2 and 5	
Tables	
Selected bond lengths and angles of complexes 1-6	Table S1
Short intra- and intermolecular hydrogen bonds detected in complexes 1-6	Table S2
Short $\pi \cdots \pi$ interactions for complexes 1-6	Table S3
X—Y•••Cg(J)(π -ring) interactions for complexes 1-6	Table S4

(3)

Figure S1. ESI-MS spectra of copper(II) complexes 1-6.

Figure S2. IR spectra of complexes 1-6 (red line) and appropriate free ligands (blue line).

Figure S3. UV-Vis spectra of complexes **1-6** in methanol (a) $(5 \cdot 10^{-5} \text{ M}, \text{ inset: } 5 \cdot 10^{-4} \text{ M})$ and the reflectance spectra in powder samples (b).

Figure S4. UV-Vis solutions stability of complexes **1-6** in methanol $(5 \cdot 10^{-5} \text{ M})$. Spectra were collected every 4 hours for 24 h.

(c) (d) Figure S5. UV-Vis spectra of complexes 2 (a) and 5 (b) dissolved in DMSO and complexes 2 (c) and 5 (d) dissolved in DMEM incubated at 37 °C for 0 h (control), 3 h and 48 h.

(1)

(3)

(5)

Figure S6. View of the supramolecular packing of complexes **1-6** arising from weak $\pi^{\bullet\bullet\bullet\pi}$ and D–H•••A and Cu–Cl•••A type interactions.

Figure S7. Cytotoxicity of ligands 2-quinolyl-terpy (L¹), 4-quinolyl-terpy (L²), 2-quinolyl-dtpy (L³) 4quinolyl-dtpy (L⁴), 2-quinolyl-dppy (L⁵) and 4-quinolyl-dppy (L⁶) employed in this research used to synthetize complexes **1-6** in HCT116 cell line evaluated 48 h after exposure to the IC₅₀, $2 \times IC_{50}$ concentrations of the corresponding complexes, or at 100 µM when the complexes were not so effective against HCT116 cells. Cell viability was determined by the MTS method. DMSO 0.1% (v/v) was used as solvent control condition.

Fbigure S8. Production of reactive oxygen species (ROS) in HCT116 cells exposed for 3 h (a) and 6 h (b) to IC_{50} concentrations of complex **2** and **5**. DMSO 0.1% (v/v) was used as solvent control and 25 μ M H₂O₂ was used as positive control.

Bond lengths [Å]								
Name	1	2	3	4	5	6		
used ligand	4'-(2-quinoline)-terpy	4'-(4-quinoline)-terpy	4'-(2-quinoline)-dtpy	4'-(4-quinoline)-dtpy	4'-(2-quinoline)-dppy	4'-(4-quinoline)-dppy		
Cu(1)–N(1)	2.049(2)	2.055(4)	2.068(4)	2.048(3)	2.047(2)	2.068(2)		
Cu(1)–N(3)	2.059(2)	2.052(5)	2.067(4)	2.055(3)	2.047(3)	2.048(2)		
Cu(1)–N(2)	1.9536(19)	1.947(4)	1.983(4)	1.973(4)	1.962(2)	1.9642(19)		
Cu(1)–Cl(1)	2.2254(7)	2.2289(15)	2.2187(14)	2.2289(13)	2.2184(8)	2.2256(7)		
Cu(1)–Cl(2)	2.5300(7)	2.5050(15)	2.4966(13)	2.4332(15)	2.5077(9)	2.4437(7)		
	Bond angles [°]							
N(1)-Cu(1)-N(2)	79.71(8)	78.89(18)	77.93(16)	78.92(14)	78.80(9)	78.44(8)		
N(2)–Cu(1)–N(3)	78.39(8)	79.23(18)	78.41(16)	77.90(14)	78.77(10)	78.80(8)		
N(1)-Cu(1)-N(3)	156.56(8)	156.33(17)	154.11(16)	154.91(17)	156.73(10)	153.97(8)		
Cl(1)-Cu(1)-N(1)	98.69(6)	99.60(13)	101.01(11)	99.50(11)	99.46(7)	97.01(6)		
Cl(1)-Cu(1)-N(2)	162.16(6)	159.71(13)	159.62(11)	154.73(12)	155.90(7)	159.36(6)		
Cl(1)-Cu(1)-N(3)	99.56(6)	97.78(13)	97.50(11)	97.35(10)	98.46(8)	99.85(6)		
Cl(2)-Cu(1)-N(1)	91.58(6)	92.11(12)	95.48(11)	96.35(11)	99.88(7)	100.09(6)		
Cl(2)-Cu(1)-N(2)	93.18(6)	90.76(12)	95.35(11)	98.42(12)	101.70(7)	98.42(6)		
Cl(2)-Cu(1)-N(3)	97.89(6)	97.10(13)	97.05(11)	96.42(11)	90.66(8)	95.57(6)		
Cl(1)–Cu(1)–Cl(2)	104.64(3)	109.53(6)	105.00(5)	106.80(6)	102.27(3)	102.21(3)		

Table S1. Selected bond	lengths [Å] and	angles [°] of co	mplexes 1-6
-------------------------	-----------------	------------------	-------------

D–H•••A	D–H [Å]	H•••A [Å]	D–A [Å]	D–H•••A [°]		
	-	1				
	no hydrogen b	oonds detected				
	,)				
$C(2)-H(2) \cdots C(2)^{a}$	0.93	2 72	3 609(6)	161.5		
C(2) = H(2) = C(2)	0.93	2.72	3.324(7)	161.0		
$C(0) H(0) \cdots C(2)^{c}$	0.93	2.45	3.524(7)	162.2		
C(12) H(12) H(12) C(12)	0.93	2.75	3.712(6)	164.5		
$C(12) = \Pi(12) = C(2)$ $C(21) = H(21) = C(2)^d$	0.93	2.81	3.568(6)	137.3		
C(21) = II(21) = II(21)	0.95	2.85	5.508(0)	157.5		
		3				
C(2)–H(2)•••Cl(1) ^e	0.93	2.73	3.578(5)	151.9		
C(5)–H(5)•••Cl(2) ^e	0.93	2.64	3.565(5)	173.5		
C(10)–H(10)•••Cl(2) ^f	0.93	2.60	3.384(5)	141.8		
C(13)–H(13)•••Cl(2) ^e	0.93	2.78	3.622(5)	150.9		
		4				
O(1) $H(1A)$ and $N(A)$	0.85	1.09	2 820(5)	172.0		
$O(1) = \Pi(1A) \cdots \Pi(4)^{\flat}$	0.85	1.90	2.820(3)	1/2.9		
$O(1) - H(1B) - CI(1)^{1}$	0.85	2.47	3.298(4)	103.7		
$O(2) = H(2R) \cdots O(1)^{r}$	0.85	2.43	3.239(0)	150.7		
$O(2) = H(2B) \cdots O(3)$	0.85	1.93	2.701(8) 2.824(11)	138.5		
$O(3) = H(3B) = O(2)^{3}$	0.83	2.07	2.624(11)	140.0		
$C(2) = H(2) \cdots C(2)^{n}$	0.93	2.62	3.480(4)	150.2		
$C(1) = H(1) = O(1)^{*}$	0.93	2.55	3.205(5)	108.7		
C(10) - H(10) - O(1)	0.93	2.32	3.250(5)	1//.6		
$C(14) - H(14) \cdots O(2)$	0.93	2.60	3.503(7)	164.2		
	[5				
O(1)–H(1AA)•••Cl(2) ¹	0.80	2.45	3.233(6)	164.4		
C(3)–H(3)•••O(1A)	0.93	2.55	3.208(7)	127.8		
C(6)–H(6)•••N(6)	0.93	2.45	2.763(4)	99.7		
$C(8)-H(8)\cdots Cl(2)^m$	0.93	2.77	3.647(3)	158.1		
C(11)–H(11)•••Cl(2) ^m	0.93	2.74	3.649(4)	165.3		
$C(12)-H(12)\cdots O(1A)^{n}$	0.93	2.47	3.103(14)	125.5		
$C(13)-H(13)-O(1B)^{n}$	0.93	2.54	3.266(8)	135.0		
$C(15)-H(15)\cdots Cl(2)^{m}$	0.93	2.76	3.596(3)	150.2		
C(16)–H(16)•••Cl(1)°	0.93	2.80	3.711(3)	165.3		
$C(19)-H(19)\cdots N(5)^{p}$	0.93	2.61	3.388(5)	140.9		
6						
O(1)-H(1A)•••N(6) ^r	0.82	2.02	2.830(3)	171.9		
$C(3)-H(3)\cdots Cl(2)^{s}$	0.93	2.61	3.498(3)	159.9		
$C(6)-H(6) \bullet \bullet Cl(2)^{s}$	0.93	2.71	3.545(2)	150.3		
C(11)–H(11)•••O(1)	0.93	2.37	3.267(4)	160.9		
$C(12)-H(12)\cdots Cl(2)^{t}$	0.93	2.82	3.471(3)	128.3		

Table S2. Short intra- and intermolecular hydrogen bonds detected in complexes 1-6

Table S3. Short $\pi \cdots \pi$ interactions for complexes **1-6**

Cg(I)••• $Cg(J)$	Cg(I)•••Cg(J) [Å]	α [°]	β [°]	γ [°]	Cg(I)-Perp [Å]	Cg(J)-Perp [Å]
1 Cg5 is the centroid of atoms N(3)/C(11)/C(12)/C(13)/C(14)/C(15): Cg6 is the centroid of atoms N(4)/C(16)/C(17)/C(18)/C(19)/C(20)						
Cg(5)•••Cg(6) ^a	3.9780	12.958	22.66	33.52	3.3165	-3.6710
$Cg(6) \cdots Cg(6)^{u}$	3.7020	0	18.70	18.70	-3.5066	-3.5066
			2			
Cg6 is the centroid of ator	ns N(4)/C(16)/C(17)/C	C(22)/C(23)/C(2	4); Cg7 is the	centroid of ator	ns C(17)/C(18)/C(19)/0	C(20)/C(21)/C(22)
$Cg(6)$ ••• $Cg(7)^{v}$	3.8835	2.216	15.24	16.93	-3.7151	-3.7470
Co4 is the centroid o	f atoms $S(2)/C(9)/N(3)$)/C(10)/C(11)· (3	roid of atoms N	$I_{(4)/C(12)/C(13)/C(14)}$	/C(15)/C(16)
Cg(4)•••Cg(6) ^w	3.6682	8.682	26.24	20.66	-3.4324	3.2903
			4			
Cg3 is the centroid of atom atoms N(4)/C(2	us S(1)/C(3)/N(1)/C(1) 12)/C(13)/C(14)/C(15)	/C(2); Cg4 is th /C(16); Cg7 is t	e centroid of a the centroid of	toms S(2)/C(9) atoms C(15)/C	/N(3)/C(10)/C(11); Cg (16)/C(17)/C(18)/C(19)	$(6 ext{ is the centroid of })/C(20)$
$Cg(3) \bullet \bullet Cg(3)^x$	3.6633	0	21.50	21.50	3.4084	3.4084
$Cg(3) \bullet \bullet Cg(4)^a$	3.7802	5.338	27.46	24.48	3.4403	-3.3545
$Cg(4) \bullet \bullet Cg(4)^{y}$	3.981	0	27.94	27.94	-3.5197	-3.5197
$Cg(6) \bullet \bullet Cg(6)^z$	3.6187	0	10.76	10.76	-3.5550	-3.5550
$Cg(6) \bullet \bullet Cg(7)^{b}$	3.9429	4.146	26.14	29.14	3.4439	3.5395
			5			
Cg3 is the centroid of ato centroid of atoms N(ms N(1)/C(1)/C(2)/N(6)/C(14)/C(15)/C(16)/	4)/C(3)/C(4); C C(17)/C(18); C	g4 is the centro g7 is the centro	oid of atoms N(oid of atoms C(2)/C(5)/C(6)/C(7)/C(8) 17)/C(18)/C(19)/C(20)	/C(9); Cg6 is the /C(21)/C(22)
$Cg(3) \bullet \bullet \bullet Cg(6)^{aa}$	3.8775(16)	5.25(14)	32.4	28.8	3.3994(12)	3.2746(11)
$Cg(4) \bullet \bullet \bullet Cg(4)^{aa}$	3.6104(15)	2.80(13)	21.2	21.2	3.3664(11)	3.3664(11)
$Cg(4) \bullet \bullet Cg(6)^{z}$	3.5941(16)	4.86(13)	25.5	20.6	3.3643(11)	3.2450(11)
$Cg(4) \bullet \bullet Cg(7)^{z}$	3.6376(18)	4.47(15)	19.8	22.5	3.3597(11)	3.4216(15)
			6			
Cg3 is the centroid of atoms N(1)/C(1)/C(2)/N(4)/C(3)/C(4); Cg4 is the centroid of atoms N(2)/C(5)/C(6)/C(7)/C(8)/C(9); Cg6 is the centroid of atoms N(6)/C(14)/C(15)/C(16)/C(17)/C(18); Cg7 is the centroid of atoms C(17)/C(18)/C(19)/C(20)/C(21)/C(22)						
Cg(3)••• $Cg(4)$ ^s	3.9990	7.410	21.30	15.58	-3.8521	-3.7257
$Cg(6)$ ••• $Cg(7)^r$	3.8485	3.982	25.88	24.73	-3.4955	-3.4624
						<u> </u>

 α = dihedral angle between Cg(I) and Cg(J); Cg(I)-Perp = Perpendicular distance of Cg(I) on ring J; Cg(J)-Perp = perpendicular distance of Cg(J) on ring I; β = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to ring I; γ = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to plane J;

Table S4. X—Y•••Cg(J)(π-ring) interactions for complexes 1-6

Y-X(I)•••Cg(J)	X(I)•••Cg(J) [Å]	X-Perp [Å]	γ [°]	Y-X(I)•••Cg(J) [°]		
1						
	Cg4 is the centroid of atc	oms N(2)/C(6)/C(7)/C(8)/C	(9)/C(10)			
Cu(1)- $Cl(1)$ -··· $Cg(4)$ ^{ab}	3.7407	3.281	28.72	130.00		
		2				
	X X	<u> </u>				
	no X—Y•••	π interactions detected				
		3				
	Cg6 is the centroid of atom	s N(4)/C(12)/C(13)/C(14)/	C(15)/C(16)			
Cu(1)- $Cl(1)$ -···Cg(6) ^f	3.7777	3.502	22.02	79.00		
4						
no X—Y••• π interactions detected						
5						
no X—Y ••• π interactions detected						
6						
V_{g4} is the centroid of atoms $N(2)/C(5)/C(6)/C(9)$						
Cu(1)- $Cl(1)$ ••• $Cg(4)$ ^{ab}	3.7473	3.255	29.71	114.00		

 $\gamma = angle X(I) \rightarrow Cg(J)$ vector and normal to plane J.

symmetry codes: (a) = $-1+x_{y}$,*z*; (b) = $1-x_{1}-y_{1}-z$; (c) = $1/2+x_{1}/2-y_{-1}/2+z$; (d) = $3/2-x_{1}/2+y_{3}/2-z$; (e) = $-x_{1}-y_{-1}/2+z$; (f) = $1/2-x_{-1}/2+y_{1}/2+z$; (g) = $x_{-1}+y_{-1}+z_{-1}$; (h) = $1+x_{1}+y_{-2}$; (i) = $1+x_{1}+y_{-1}+z$; (j) = $2-x_{2}-y_{-1}-z$; (k) = $3-x_{-}-y_{-}-z$; (l) = $-1/2+x_{1}-y_{-}z$; (m) = $1/2-x_{y}, 1-z$; (n) = $x_{1}+y_{-}z$; (o) = $x_{3}/2-y_{1}/2+z$; (p) = $x_{-1}+y_{-}z$; (r) = $1-x_{2}-y_{1}-z$; (s) = $-x_{2}-y_{2}-z$; (z) = $-1-x_{1}-y_{2}-z$; (v) = $-x_{2}-y_{2}-z$; (v) = $-x_{2}-z_{2}-z$; (v) = $-x_{2}-z_{2}-z_{2}-z$; (v) = $-x_{2}-z_{2}-z_{2}-z$; (v) = $-x_{2}-z_{2}$