Electronic Supplementary Information:

The two new derivatives of scandium borohydride, $MSc(BH_4)_4$, M = Rb, Cs, prepared via a onepot solvent-mediated method

A. Starobrat,^{a,b*} T. Jaroń^{b*} and W. Grochala^b

^a College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

^b Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

Contents:

- 1. Figure S1. Rietveld plot of CsSc(BH₄)₄.
- 2. Figure S2. Rietveld plot of RbSc(BH₄)₄.
- 3. Figure S3. FTIR spectra of CsSc(BH₄)₄ samples.
- 4. Figure S4. FTIR spectra of RbSc(BH₄)₄ samples.
- 5. Figure S5. Sc-Rb zigzag lines in RbSc(BH₄)₄.
- 6. Figure S6. Mass spectrum of gaseous decomposition products of RbSc(BH₄)₄ obtained mechanochemically.
- 7. Figure S7. Mass spectrum of gaseous decomposition products of RbSc(BH₄)₄ obtained via DMS-mediated synthesis.
- 8. Figure S8. Mass spectrum of gaseous decomposition products of $CsSc(BH_4)_4$ obtained mechanochemically.
- 9. Figure S9. Mass spectrum of gaseous decomposition products of $CsSc(BH_4)_4$ obtained via DMS-mediated synthesis.
- 10. Figure S10. Crystal structure of M₃ScCl₆, M=Rb, Cs the elpasolite-type structure.
- 11. Figure S11. PXRD patterns of $CsSc(BH_4)_4$ samples obtained via solvent-mediated and mechanochemical synthesis and by-products of solvent-mediated synthesis.
- 12. Figure S12. Rietveld plot of Cs₃ScCl₆.
- 13. Figure S13. Rietveld plot of Rb₃ScCl₆.
- 14. Figure S14. PXRD patterns of Rb-Y samples prepared via solvent-mediated method.
- 15. Figure S15. FTIR spectra of Rb-Y samples prepared via solvent-mediated method.
- 16. The structures of $MSc(BH_4)_4$ optimized computationally
- 17. Table S1. Comparison of the selected parameters for the experimental and computed structures.
- 18. Figure S16. An overlay of the experimental and computationally optimized structures of $RbSc(BH_4)_4$.
- 19. Figure S17. An overlay of the experimental and computationally optimized structures of CsSc(BH₄)₄.

Figure S1. Rietveld refinement of PXRD (Cu K_{α}) data collected for CsSc(BH₄)₄ at room temperature, wRp = 1.17%, R(obs)= 4.72%.

Figure S2. Rietveld refinement of PXRD (Cu K_{α}) data collected for RbSc(BH₄)₄ at room temperature, wRp = 1.23%, R(obs)= 2.29%.

Figure S3. FTIR spectra of $CsSc(BH_4)_4$ obtained via mechanochemical (top) and solvent-mediated (middle) synthesis as well as of by-products of solvent-mediated synthesis (down, site **B**), * - background compensation error.

Figure S4. FTIR spectra of $RbSc(BH_4)_4$ obtained via mechanochemical (top) and solvent-mediated (middle) synthesis as well as of by-products of solvent-mediated synthesis (down, site **B**), * - background compensation errors.

Figure S5. Sc-Rb zigzag lines along the *c*-axis in RbSc(BH₄)₄. Rb atoms in blue, Sc in red, Sc-Rb distance 4.487(5) Å.

Figure S6. Mass spectrum of gaseous decomposition products of $RbSc(BH_4)_4$ obtained mechanochemically (inset: spectrum with logarithmic Ion current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 15 °C.

Figure S7. Mass spectrum of gaseous decomposition products of $RbSc(BH_4)_4$ obtained via DMS-mediated synthesis (inset: spectrum with logarithmic lon current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 20 °C.

Figure S8. Mass spectrum of gaseous decomposition products of $CsSc(BH_4)_4$ obtained mechanochemically (inset: spectrum with logarithmic lon current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 15 °C.

Figure S9. Mass spectrum of gaseous decomposition products of $CsSc(BH_4)_4$ obtained via DMS-mediated synthesis (inset: spectrum with logarithmic Ion current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 20 °C.

Figure S10. Crystal structure of M₃ScCl₆, M=Rb, Cs - the elpasolite-type structure. M atoms in orange, Sc - purple, Cl - green.

Figure S11. PXRD patterns of $CsSc(BH_4)_4$ samples obtained via the solvent-mediated (a) and the mechanochemical (c) synthesis and by-products of solvent-mediated synthesis (b), * - LiCl , ^ - CsBH₄, unmarked - CsSc(BH₄)₄ or Cs_3ScCl_6 , respectively.

Figure S12. Rietveld refinement of PXRD (Cu K_{α}) data collected for Cs₃ScCl₆ sample at room temperature, wRp = 1.20%, R(obs)_{CsBH4} = 3.66%, R(obs)_{Cs3ScCl6} = 3.20%.

Figure S13. Rietveld refinement of PXRD (Cu K_{α}) data collected for Rb₃ScCl₆ sample at room temperature, wRp = 1.48%, R(obs)_{RbBH4} = 2.57%, R(obs)_{Rb3ScCl6} = 5.24%.

Figure S14. PXRD patterns of Rb-Y samples prepared via solvent-mediated method, site **A** - Y(BH₄)₃·DMS (top), and site **B** - RbBH₄ (marked with *) and ht-Rb₃YCl₆ (bottom).

Figure S15. FTIR spectra of Rb-Y samples prepared via solvent-mediated method, site **A** - Y(BH₄)₃·DMS (top), and site **B** - RbBH₄ and ht-Rb₃YCl₆ (bottom), * - background compensation errors.

The structures of MSc(BH₄)₄ optimized computationally

RbSc(BH₄)₄

```
data RbScCORRECTED Geom800eV 6cores NoCell
_audit_creation_date 2019-06-26
_audit_creation_method 'Materials
                             'Materials Studio'
_symmetry_space_group_name_H-M 'PBCM'
_symmetry_Int_Tables_number
                              57
symmetry cell setting
                             orthorhombic
loop
symmetry equiv pos as xyz
 x,y,z
 -x,-y,z+1/2
 -x,y+1/2,-z+1/2
 x,-y+1/2,-z
 -x,-y,-z
 x,y,-z+1/2
 x,-y+1/2,z+1/2
 -x,y+1/2,z
_cell length a
                            7.6514
cell length b
                           11.1821
cell length c
                           11.2443
_cell_angle_alpha
                            90.0000
_cell_angle_beta
                           90.0000
cell angle gamma
                            90.0000
loop_
atom site label
atom site type symbol
_atom_site_fract x
_atom_site_fract y
_atom_site_fract_z
atom site U iso or equiv
atom site adp type
atom site occupancy
B1 B 0.23519 0.02670 -0.58184 0.02200 Uiso 1.00
         0.36413 0.04382 -0.64732 0.02700 Uiso 1.00
H11
    Η
H12 H 0.27076 -0.02575 -0.49111 0.02700 Uiso 1.00
H13 H 0.17172 0.12656 -0.55910 0.02700 Uiso 1.00
H14 H 0.12514 -0.02621 -0.64381 0.02700 Uiso 1.00
H21
     H 0.94449 0.21868 -0.83832 0.02700 Uiso 1.00
    H 0.22785 0.29877 -0.66164 0.02700 Uiso 1.00
Н32
    Rb 0.55522 0.25000 -0.50000 0.09067 Uani 1.00
Rb1
Sc1 Sc 0.16021 0.13182 -0.75000 0.05967 Uani 1.00
в2
    B 0.86828 0.17635 -0.75000 0.02200 Uiso 1.00
H22 H 0.71314 0.19760 -0.75000 0.02700 Uiso 1.00
H23 H 0.89853 0.06708 -0.75000 0.02700 Uiso 1.00
   B 0.32462 0.30552 -0.75000 0.02200 Uiso 1.00
H 0.41624 0.21334 -0.75000 0.02700 Uiso 1.00
в3
Н31
H33 H 0.41306 0.39492 -0.75000 0.02700 Uiso 1.00
```

CsSc(BH₄)₄

data_CsScGeom800eV_6cores_NoCell
_audit_creation_date 2019-06-26
_audit_creation_method 'Materials Studio'

symme	etry a	space gro	up name H-	M 'P21/C	; ;			
				14				
symmetry cell setting				monocli	nic			
loop	_	—						
symme	etry (equiv pos	as xyz					
- x,y,	z –							
-x,y	+1/2,	-z+1/2						
-x,-	y,-z							
x,-y	+1/2,	z+1/2						
cell length a				9.5870				
cell length b				10.7270				
cell length c				12.2280				
cell angle alpha				90.0000				
cell angle beta				126.3510				
cell angle gamma				90.0000				
loop	-	_						
atom	site	label						
atom	site	_ type syml	bol					
atom	site	fract x						
atom	site	fract y						
atom	site	fract z						
atom	site	U iso or	equiv					
atom	site	adp type	_					
atom	site	occupancy	У					
Cs22	Cs	0.82694	0.34270	0.75062	0.06900	Uiso	1.00	
В1	В	0.21177	0.01695	0.27563	0.03500	Uiso	1.00	
Н2	Н	0.23203	0.12082	0.32887	0.04200	Uiso	1.00	
НЗ	Н	0.15239	-0.05817	0.31159	0.04200	Uiso	1.00	
H4	Н	0.11686	0.03374	0.15052	0.04200	Uiso	1.00	
Н5	Н	0.35660	-0.01335	0.30707	0.04200	Uiso	1.00	
В6	В	0.59468	0.22457	0.38529	0.03500	Uiso	1.00	
H7	Н	0.53578	0.28562	0.27965	0.04200	Uiso	1.00	
Н8	Н	0.74057	0.25675	0.47509	0.04200	Uiso	1.00	
Н9	Н	0.48976	0.23768	0.41267	0.04200	Uiso	1.00	
H10	Н	0.58853	0.11248	0.35595	0.04200	Uiso	1.00	
B11	В	0.13689	0.33158	0.11960	0.03500	Uiso	1.00	
H12	Н	0.20824	0.31906	0.24318	0.04200	Uiso	1.00	
H13	Н	0.03689	0.41819	0.07083	0.04200	Uiso	1.00	
H14	Н	0.25418	0.34173	0.10504	0.04200	Uiso	1.00	
H15	Н	0.06144	0.23137	0.06534	0.04200	Uiso	1.00	
B16	В	0.33930	0.08443	0.04155	0.03500	Uiso	1.00	
H17	Н	0.39476	0.19319	0.07405	0.04200	Uiso	1.00	
H18	Н	0.35291	0.04517	-0.04403	0.04200	Uiso	1.00	
H19	Н	0.42198	0.02115	0.14752	0.04200	Uiso	1.00	
H20	Н	0.18734	0.08764	0.00469	0.04200	Uiso	1.00	
Sc21	Sc	0.32111	0.16280	0.20685	0.04500	Uiso	1.00	

MSc(BH ₄) ₄	R	b	Cs		
Data	experimental	DFT	experimental	DFT	
Space group	Pb	cm	P21/c		
Z	2	4	4		
a [Å]	7.6514(10)	7.6514	9.587(2)	9.5870	
b [Å]	11.1821(14)	11.1821	10.727(3)	10.7270	
c [Å]	11.2443(14)	11.2443	12.228(3)	12.2280	
β [°]	90	90	126.351(3)	126.3510	
V [ų]	962.1(2)	962.1	1012.8(5)	1012.8	
Sc-Н [Å]	2.255(8)	2.129–2.177	2.202(7)	2.143–2.184	
M–Sc [Å]	4.487(4); 5.374–5.512(4)	4.334; 5.556– 5.57462	4.788(11)–4.993(7); 5.685–5.787(8)	4.553– 5.095; 5.594–5.974	
Sc–B [Å]	2.360(8)	2.289-2.314	2.300(3)	2.289–2.303	
M–B [Å]	3.494(7)– 3.806(6)	3.377–3.784	3.630(8)-4.165(11)	3.541–3.909	

Table S1. Comparison of the selected parameters for the experimental and computed structures.

Figure S16. An overlay of the experimental (darker colors) and computationally optimized (brighter colors) structures of $RbSc(BH_4)_4$. Top – the sublattice of heavy atoms; bottom – the geometry of the $[Sc(BH_4)_4]^-$ complex anion.

Figure S17. An overlay of the experimental (darker colors) and computationally optimized (brighter colors) structures of $CsSc(BH_4)_4$. Top – the sublattice of heavy atoms; bottom – the geometry of the $[Sc(BH_4)_4]^-$ complex anion.