Electronic Supplementary Information

Fluorine and Tin Co-Doping Synergistically Improves the Photoelectrochemical Water Oxidation Performance of TiO₂ Nanorod Arrays by Enhancing the Ultraviolet Light Conversion Efficiency

Tong Wu,^a Changlong Chen, *^a Yuling Wei, ^b Ranran Lu,^a Leshuang Wang^a and Xuchuan Jiang *^a

^aKey Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Institute for Smart Materials & Engineering University of Jinan No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, PR China E-mail: chm_chencl@ujn.edu.cn (C. Chen); ism_jiangxc@ujn.edu.cn (X. Jiang)

^bState Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology, Shandong Academy of Sciences No. 3501, Daxue Road, Changqing District, Jinan 250353, Shandong, PR China

Fig. S1 Optical photograph of the hydrothermally prepared samples, from left to right: undoped TiO₂, Sn doped TiO₂, F doped TiO₂ and F/Sn co-doped TiO₂.

Fig. S2 EDS mapping for undoped TiO_2 sample.

Fig. S3 EDS element analysis for undoped TiO_2 sample.

Fig. S4 EDS element analysis for F/Sn co-doped TiO_2 sample.

		undoped TiO ₂		F/Sn co-doped TiO ₂	
El	AN	Norm. C/[wt.%]	Norm. C /[atm.%]	Norm. C/[wt.%]	Norm. C /[atm.%]
Ti	22	58.31	33.12	49.05	25.79
0	8	38.32	65.11	44.20	69.56
F	9	0.84	1.20	2.89	3.83
Sn	50	2.53	0.58	3.86	0.82

Table S1 The quantification of Ti, O, F and Sn of the nanorod for the undoped and F/Sn codoped TiO₂ samples.

Fig. S5 Chopped LSV curve for the undoped TiO_2 (a), Sn doped TiO_2 (b), F doped TiO_2 (c) measured under AM1.5G illumination at 100 mW·cm⁻².

Fig. S6 XRD patterns of the F/Sn co-doped TiO_2 sample before and after 250 min of PEC test.

Fig. S7 Reflective UV-vis spectra of the undoped and F/Sn co-doped TiO_2 powder samples

Fig. S8 LSV curves of F doped TiO_2 (a), Sn doped TiO_2 (b), F doped TiO_2 with 2.0 atm% Sn doping(c) and Sn doped TiO_2 with 1.5atm% F doping(d) measured under AM1.5G illumination at 100 mW·cm⁻² and in the dark.

Fig. S9 LSV curves of the 1.5 atm% F and 2.0 atm% Sn co-doped TiO₂ sample prepared with different growth time measured under AM1.5G illumination at 100 mW·cm⁻² and in dark.