Supporting Information

Exploiting the 1,4-Naphthoquinone and 3-Iodo-1,4-Naphthoquinone Motifs as Anion Binding Sites by Hydrogen or Halogen-Bonding Interactions

Encarnación Navarro-García,^a María D. Velasco,^a Fabiola Zapata,^a Antonio Bauzá,^b Antonio Frontera,^b Carmen Ramírez de Arellano^c and Antonio Caballero.*

a Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.

b Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa Km75, 07122 Palma de Mallorca (Baleares) Spain.

c Departamento de Química Orgánica, Universidad de Valencia, E-46100 Valencia, Spain.

Contents

PART I: NMR Spectra.	S2
PART II: Uv-vis Anion Binding Studies.	S6
PART III: Mass Spectrometry Studies.	S13
PART IV: Fluorescence Anion Binding Studies.	S16
PART V: ¹ H-NMR Anion Binding Studies.	S17
PART VI: Computational Results.	S22
PART VII: Fast scan X-ray data.	S34
PART VIII: Detection Limits	S35

PART I: NMR Spectra.

bis(1,4-naphthoquinone-2-yl) isophthalate 4:

Figure S1. ¹H NMR spectra of bis(1,4-naphthoquinone-2-yl) isophthalate 4.

Figure S2. ¹³C NMR spectra of bis(1,4-naphthoquinone-2-yl) isophthalate 4.

Figure S3. HSQC NMR spectra of bis(1,4-naphthoquinone-2-yl) isophthalate 4.

Figure S4. HMBC NMR spectra of bis(1,4-naphthoquinone-2-yl) isophthalate 4.

bis(3-iodo-1,4-naphthoquinone-2-yl) isophthalate 5:

Figure S5. ¹H NMR spectra of bis(3-iodo-1,4-naphthoquinone-2-yl) isophthalate 5.

Figure S6. ¹³C NMR spectra of bis(3-iodo-1,4-naphthoquinone-2-yl) isophthalate 5.

Figure S7. HSQC NMR spectra of bis(3-iodo-1,4-naphthoquinone-2-yl) isophthalate 5.

Figure S8. HMBC NMR spectra of bis(3-iodo-1,4-naphthoquinone-2-yl) isophthalate 5.

PART II: Uv-Vis Anion Binding Studies.

Figure S9. Changes in the absorption spectra of receptor 4 (c = 5 x 10^{-5} M in CH₃CN) upon addition of HP₂O₇³⁻ anions at 20 °C.

Figure S10. Changes in the absorption spectra of receptor **4** ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of H₂PO₄⁻ anions at 20 °C.

Figure S11. Changes in the absorption spectra of receptor 4 ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of AcO⁻ anions at 20 °C.

Figure S12. Changes in the absorption spectra of receptor 4 ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of C₆H₅CO₂⁻ anions at 20 °C.

Figure S13. Changes in the absorption spectra of receptor **4** ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of SO₄²⁻ anions at 20 °C.

Figure S14. Changes in the absorption spectra of receptor 2-hydroxy-1,4-naphthoquinone ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of OH⁻ anions at 20 °C.

Figure S15. Changes in the absorption spectra of receptor **5** ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of HP₂O₇³⁻ anions at 20 °C.

Figure S16. Changes in the absorption spectra of receptor **5** ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of F⁻ anions at 20 °C.

Figure S17. Changes in the absorption spectra of receptor **5** ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of AcO⁻ anions at 20 °C.

Figure S18. Changes in the absorption spectra of 2-hydroxy-3-iodo-1,4naphthoquinone ($c = 5 \times 10^{-5} \text{ M in CH}_3\text{CN}$) upon addition of OH⁻ anions at 20 °C.

Figure S19. Changes in the colour of a solution of the receptor **5** (1) in CH₃CN upon addition of $F^-(2)$, $HP_2O_7^{3-}(3)$, AcO⁻(4), $H_2PO_4^{-}(5)$, $C_6H_5CO_2^{-}(6)$, $SO_4^{2-}(7)$, $HSO_4^{-}(8)$, $NO_3^{-}(9)$, Cl⁻(10), Br⁻(11) and I⁻(12).

Figure S20. Changes in the absorption spectra of the Charge Transfer band of the complex **4**·**2AcO**⁻ in different solvents.

Figure S21. Changes in the absorption spectra of the Charge Transfer band of the complex **5**·**2AcO**⁻ in different solvents.

Figure S22. Changes in the absorption spectra at $\lambda = 358$ nm of the receptor 4 (c = 5 x 10⁻⁵ M in CH₃CN) upon addition of increasing amounts of SO₄²⁻ anions. Data points represent experimental data, continuous lines represent calculated curves.

Figure S23. Changes in the absorption spectra at $\lambda = 358$ nm of the receptor 5 (c = 5 x 10⁻⁵ M in CH₃CN) upon addition of increasing amounts of SO₄²⁻ anions. Data points represent experimental data, continuous lines represent calculated curves.

PART III: Mass Spectrometry Studies.

Figure S24. Mass spectrum of the solution of **4** (2.5 x 10^{-3} M in CH₃CN) after the addition of 2 equivalents of HP₂O₇³⁻ ions, indicating the disruption of the ester group.

Figure S25. Mass spectrum of the solution of **4** (2.5 x 10^{-3} M in CH₃CN) after the addition of 2 equivalents of F⁻ ions, indicating the disruption of the ester group.

Figure S26. Mass spectrum of the solution of 4 (2.5 x 10^{-3} M in CH₃CN) after the addition of 2 equivalents of AcO⁻ ions, indicating the disruption of the ester group.

Figure S27. Mass spectrum of the solution of **5** (2.5 x 10^{-3} M in CH₃CN) after the addition of 2 equivalents of HP₂O₇³⁻ ions, indicating the disruption of the ester group.

Figure S28. Mass spectrum of the solution of **5** (2.5 x 10^{-3} M in CH₃CN) after the addition of 2 equivalents of F⁻ ions, indicating the disruption of the ester group.

Figure S29. Mass spectrum of the solution of **5** (2.5 x 10^{-3} M in CH₃CN) after the addition of 2 equivalents of AcO⁻ ions, indicating the disruption of the ester group.

PART IV: Fluorescence Anion Binding Studies.

Figure S30. Changes in the fluorescence spectra of receptor **5** ($c = 5 \times 10^{-5}$ M in CH₃CN) upon addition increasing amounts of SO₄²⁻ anions.

Figure S31. ¹H NMR spectral changes observed in the receptor 4 in CD₃CN/MeOD (9:1) during the addition of SO_4^{2-} anion.

Figure S32. ¹H NMR spectral changes observed in the receptor **4** in CD₃CN during the addition of F⁻ anion.

Figure S33. ¹H NMR spectral changes observed in the receptor **4** in CD₃CN during the addition of AcO⁻ anion.

Figure S34. ¹H NMR spectral changes observed in the receptor 4 in CD₃CN during the addition of $HP_2O_7^{3-}$ anion.

Figure S35. ¹H NMR spectral changes observed in the receptor 4 in CD₃CN during the addition of $H_2PO_4^-$ anion.

Figure S36. ¹H NMR spectral changes observed in the receptor 4 in CD₃CN during the addition of $C_6H_5CO_2^-$ anion.

Figure S37. ¹H NMR spectral changes observed in the receptor **5** in CD₃CN during the addition of F⁻ anion.

Figure S38. ¹H NMR spectral changes observed in the receptor **5** in CD₃CN during the addition of AcO⁻ anion.

Figure S39. ¹H NMR spectral changes observed in the receptor **5** in CD₃CN during the addition of $HP_2O_7^{3-}$ anion.

Figure S40. (a) Optimized 2:1 complex of receptor **4** (one molecule in blue and other in green) with sulfate (represented in pink). (b) Optimized 2:1 complex of receptor **5** (one molecule in blue and other in green) with sulfate (represented in pink). Interaction represented as dashed lines. Distances in Å

Cartesian coordinates of the optimized receptors and complexes

Receptor 4, planar conformation

С	1.2116523	0.0007831	-0.0856596
С	0.000000	0.0000000	-0.7851424
Н	0.000000	0.0000000	-1.8751419
С	-1.2116523	-0.0007831	-0.0856596
С	-1.2112455	-0.0002028	1.3211174
С	0.000000	-0.0000000	2.0131454
Η	0.000000	0.0000000	3.1032008
С	1.2112455	0.0002028	1.3211174
Η	2.1582589	-0.0000568	1.8600025
С	2.4661804	0.0029415	-0.8851480
0	3.5600383	-0.0008225	-0.0269832
0	2.5384731	0.0072064	-2.0921200
С	4.8715530	0.0027437	-0.4046945
С	5.7505812	-0.0116022	0.8193771
0	5.2555918	-0.0261507	1.9419897
С	7.2182159	-0.0072350	0.5880735
С	8.0840041	-0.0190743	1.6902364

Η	7.6526146	-0.0313447	2.6913430
С	9.4634363	-0.0149705	1.4915090
Η	10.1358167	-0.0239999	2.3500992
С	9.9866136	0.0009576	0.1919800
Н	11.0667618	0.0041142	0.0398871
С	9.1304802	0.0127272	-0.9091191
Н	9.5123566	0.0253084	-1.9304383
С	7.7446388	0.0086888	-0.7185755
0	7.2684762	0.0358878	-3.0535847
С	6.8327014	0.0216160	-1.9012731
С	5.3786059	0.0175098	-1.6620097
Η	4.7451129	0.0273873	-2.5440402
Η	-2.1582589	0.0000568	1.8600025
С	-2.4661804	-0.0029415	-0.8851480
0	-2.5384731	-0.0072064	-2.0921200
0	-3.5600383	0.0008225	-0.0269832
С	-4.8715530	-0.0027437	-0.4046945
С	-5.7505812	0.0116022	0.8193771
С	-5.3786059	-0.0175098	-1.6620097
С	-7.2182159	0.0072350	0.5880735
С	-6.8327014	-0.0216160	-1.9012731
Н	-4.7451129	-0.0273873	-2.5440402
С	-8.0840041	0.0190743	1.6902364
С	-7.7446388	-0.0086888	-0.7185755
С	-9.4634363	0.0149705	1.4915090
С	-9.1304802	-0.0127272	-0.9091191
С	-9.9866136	-0.0009576	0.1919800
Н	-9.5123566	-0.0253084	-1.9304383
Н	-11.0667618	-0.0041142	0.0398871
Н	-7.6526146	0.0313447	2.6913430
Н	-10.1358167	0.0239999	2.3500992
0	-5.2555918	0.0261507	1.9419897
0	-7.2684762	-0.0358878	-3.0535847

Receptor 4, non-planar conformation

С	-2.2968646	2.0686762	0.9123499
С	-0.9138560	2.0563083	0.6968327
Н	-0.4842049	1.3985809	-0.0543624
С	-0.0847624	2.8832223	1.4635519
С	-0.6397957	3.7150818	2.4492286
С	-2.0175617	3.7238519	2.6621532
Н	-2.4464095	4.3697405	3.4283593
С	-2.8466665	2.9046391	1.8973936
Н	-3.9259499	2.8916509	2.0496662
С	-3.2267687	1.2059493	0.1438762
0	-2.5641339	0.5393104	-0.8957469
0	-4.4181931	1.1053115	0.3163398
С	-3.1987520	-0.5545299	-1.4274815
С	-3.4851381	-1.6838062	-0.4801687
0	-3.1390069	-1.6112271	0.6939714
С	-4.1570710	-2.8750704	-1.0613084
С	-4.5238747	-3.9322354	-0.2184945
Н	-4.3129991	-3.8454109	0.8476096
С	-5.1446512	-5.0622027	-0.7489231
Н	-5.4332298	-5.8824472	-0.0906462
С	-5.3971397	-5.1454752	-2.1241656
Н	-5.8818079	-6.0315188	-2.5361047
С	-5.0305118	-4.0983222	-2.9698035
Н	-5.2138737	-4.1407592	-4.0438619
С	-4.4127136	-2.9577070	-2.4458293
0	-4.2231561	-1.8939291	-4.5757060
С	-4.0273131	-1.8403148	-3.3609872
С	-3.4180336	-0.6434840	-2.7546755
Н	-3.1640234	0.1770709	-3.4262392
Н	0.0278236	4.3436722	3.0387748
С	1.3880682	2.9055237	1.2915782
0	2.1811513	3.5031061	1.9795154
0	1.7793187	2.1862329	0.1539535

С	3.0970948	1.8109224	0.0865087
С	3.5875644	0.9074550	1.1807524
С	3.8504925	2.1383663	-0.9821853
С	5.0076373	0.4787894	1.0922779
С	5.2441054	1.6797355	-1.1165850
Η	3.4566678	2.7679977	-1.7805310
С	5.5490260	-0.3098309	2.1156593
С	5.8047355	0.8414786	-0.0131335
С	6.8755885	-0.7318751	2.0415594
С	7.1332657	0.4086845	-0.0814088
С	7.6670434	-0.3732600	0.9430218
Η	7.7285551	0.6984873	-0.9479046
Η	8.7041308	-0.7064166	0.8873173
Η	4.9115091	-0.5788527	2.9582286
Η	7.2962996	-1.3435021	2.8405398
0	2.8240669	0.5336238	2.0644220
0	5.9143179	1.9987078	-2.0991888

Receptor 5

С	1.7021019	-1.2113544	6.6798320
С	2.0066154	-2.2678705	7.5528747
С	1.3880260	-3.5070720	7.3932453
Η	1.6236699	-4.3253555	8.0737376
Η	2.7290651	-2.0940222	8.3503341
С	2.3901516	0.0833638	6.8995813
0	3.2332959	0.3182953	7.7311623
0	1.9777129	1.0350089	5.9573911
С	2.3387773	2.3337222	6.1823709
С	1.7623059	2.9717766	7.4101126
С	3.0729586	3.0237282	5.2742135
С	2.1369311	4.3841549	7.6660706
С	3.4012449	4.4667115	5.4715523
С	1.6963445	5.0082424	8.8392762

С	2.9140182	5.1003580	6.7360814
С	2.0306677	6.3387617	9.0877815
С	3.2390198	6.4383906	6.9895104
С	2.8009138	7.0534072	8.1623056
Η	3.8365038	6.9766858	6.2536212
Η	3.0602042	8.0946965	8.3572513
Η	1.0943555	4.4303467	9.5407541
Η	1.6902180	6.8224018	10.0040673
0	1.0012641	2.3358053	8.1312737
0	4.0527561	5.0980042	4.6477066
С	0.7806742	-1.4010946	5.6435047
Η	0.5466737	-0.5857958	4.9640544
С	0.1658034	-2.6480088	5.4835597
С	0.4694356	-3.7002162	6.3625304
Η	-0.0232444	-4.6616323	6.2164377
С	-0.8078576	-2.9162822	4.3986246
0	-1.3849017	-3.9558853	4.1895917
0	-1.0417895	-1.7624852	3.6365477
С	-1.6805418	-1.9273890	2.4405111
С	-0.9554114	-2.7525378	1.4199979
С	-2.8366957	-1.2733245	2.1652158
С	-1.6300352	-2.9414388	0.1129229
С	-3.4957371	-1.3845361	0.8305374
С	-1.0431884	-3.7739329	-0.8476183
С	-2.8412294	-2.2829194	-0.1706439
С	-1.6619404	-3.9543371	-2.0837242
С	-3.4525300	-2.4636485	-1.4169308
С	-2.8659051	-3.2985598	-2.3679177
Η	-4.3875798	-1.9406351	-1.6179457
Η	-3.3485849	-3.4395157	-3.3357655
Η	-0.1034185	-4.2691994	-0.6022182
Η	-1.2064466	-4.6068616	-2.8293963
0	0.1514523	-3.2124553	1.6791623
0	-4.5324866	-0.7846272	0.5714444

Ι	3.8028712	2.1028693	3.5426816
I	-3.7776051	-0.0762435	3.6004000

Complex 4-sulfate

С	0.8844623	1.1419335	4.7925104
С	1.2776012	1.1946057	6.1404124
С	0.9905494	0.1288989	6.9935833
Η	1.2773259	0.1778340	8.0441555
Η	1.7938859	2.0810131	6.5102125
С	1.2072646	2.3017013	3.9223051
0	2.0711820	3.1327140	4.1386992
0	0.4263170	2.3019498	2.7927536
С	0.6267182	3.3077660	1.8709955
С	0.1810974	4.6751272	2.2624608
С	1.0717553	2.9931487	0.6372768
С	0.3619984	5.7404565	1.2427354
С	1.3436740	4.0494271	-0.3491841
Η	1.2532514	1.9403581	0.3699798
С	-0.0509971	7.0467338	1.5285111
С	0.9244782	5.4427108	-0.0168193
С	0.0894108	8.0507668	0.5699391
С	1.0677544	6.4580195	-0.9683899
С	0.6494342	7.7569695	-0.6785185
Η	1.4911185	6.2069508	-1.9411322
Η	0.7458326	8.5395250	-1.4312159
Η	-0.4890461	7.2589409	2.5038261
Η	-0.2465657	9.0638335	0.7919518
0	-0.3444518	4.8779354	3.3570908
0	1.9271326	3.7858867	-1.4066258
0	-1.1792657	0.0929511	1.3832782
С	0.2459771	0.0043499	4.2777700
Η	-0.0657296	-0.0340155	3.2253473
С	-0.0111412	-1.0730529	5.1408383

С	0.3370736	-1.0011837	6.4976320
Н	0.1055729	-1.8429805	7.1513191
С	-0.6900208	-2.3013068	4.6362227
0	-1.3286486	-3.0909962	5.3115169
0	-0.5237451	-2.3843178	3.2938737
С	-1.1324774	-3.3647674	2.5246704
С	-0.6002270	-4.7240893	2.5776967
С	-2.0271084	-2.9353287	1.5995596
С	-1.0959862	-5.6538614	1.5172726
С	-2.5846692	-3.8481304	0.5938220
Н	-2.3774395	-1.9051883	1.6144088
С	-0.6299984	-6.9729120	1.4937180
С	-2.0012977	-5.2185741	0.5250965
С	-1.0251825	-7.8420658	0.4766374
С	-2.3902878	-6.0958435	-0.4936205
С	-1.8967769	-7.4007487	-0.5259934
Η	-3.0833414	-5.7368788	-1.2552820
Η	-2.1923024	-8.0761103	-1.3297665
Η	0.0654393	-7.2932260	2.2683563
Η	-0.6403205	-8.8618425	0.4559174
0	0.2367178	-5.0780286	3.4205573
0	-3.5238918	-3.5037867	-0.1333748
S	-0.4304863	-0.3717725	0.1728190
0	1.0377745	-0.0500052	0.3119642
0	-0.9785525	0.2899009	-1.0535466
0	-0.5529057	-1.8768594	0.0332305
С	1.2564119	-1.2206951	-4.3481290
С	1.4824927	-1.3172772	-5.7310465
С	0.8738442	-0.4179273	-6.6064975
Η	1.0320472	-0.5080807	-7.6812631
Η	2.1220223	-2.1155060	-6.1089349
С	1.8969870	-2.2393353	-3.4721317
0	2.9035236	-2.8690179	-3.7488728
0	1.2229162	-2.3621124	-2.2907190

С	1.6190780	-3.3424245	-1.4008630
С	1.4472235	-4.7519480	-1.8201347
С	1.9525998	-2.9797625	-0.1437570
С	1.8735388	-5.7855796	-0.8350003
С	2.3582617	-3.9800513	0.8504667
Η	1.9407485	-1.9265373	0.1529008
С	1.8541669	-7.1361102	-1.2019347
С	2.3030682	-5.4188254	0.4578951
С	2.2710637	-8.1146521	-0.2980398
С	2.7036205	-6.4065023	1.3630443
С	2.6941728	-7.7505392	0.9857151
Η	3.0110950	-6.1015407	2.3630492
Η	3.0078499	-8.5172312	1.6950713
Η	1.5118127	-7.4041571	-2.2014579
Η	2.2571779	-9.1650753	-0.5907282
0	0.9511145	-5.0419382	-2.9122894
0	2.7814999	-3.6251224	1.9568924
С	0.4675975	-0.1852989	-3.8242658
Η	0.2663802	-0.0964290	-2.7496116
С	-0.1131165	0.7294469	-4.7149744
С	0.0600622	0.5969849	-6.1011691
Η	-0.4274453	1.3053541	-6.7720098
С	-0.9641716	1.8425978	-4.2183241
0	-1.9788607	2.2541432	-4.7491532
0	-0.4603272	2.3475908	-3.0478354
С	-1.1093956	3.3973448	-2.4389807
С	-1.0800656	4.7109390	-3.1433704
С	-1.6026555	3.2301132	-1.1929037
С	-1.7802098	5.8319342	-2.4662333
С	-2.2043953	4.3561100	-0.4651136
Η	-1.5298332	2.2390653	-0.7229527
С	-1.8768430	7.0722775	-3.1081976
С	-2.3071002	5.6698699	-1.1668824
С	-2.4943440	8.1467233	-2.4667228

С	-2.9083490	6.7568825	-0.5259725
С	-3.0067032	7.9898332	-1.1741091
Н	-3.2897448	6.6212443	0.4860358
Η	-3.4785496	8.8326345	-0.6681423
Н	-1.4571011	7.1815455	-4.1084369
Η	-2.5697229	9.1103461	-2.9714728
0	-0.4708339	4.8450063	-4.2053318
0	-2.6105454	4.2071541	0.6934401

Complex 5-sulfate

С	1.5076276	-1.2592844	6.4710227
С	2.0582893	-2.3263404	7.1954527
С	1.4844398	-3.5950564	7.1127390
Н	1.9133033	-4.4255348	7.6757683
Н	2.9373809	-2.1388195	7.8126057
С	2.1622716	0.0707687	6.5834203
0	3.3050577	0.2661203	6.9431336
0	1.2978925	1.0692300	6.1967577
С	1.7368061	2.3797283	6.2780769
С	1.8986105	2.9108341	7.6416272
С	1.8718657	3.1077882	5.1288438
С	2.3652387	4.3245131	7.7462604
С	2.2567904	4.5460310	5.2235236
С	2.6188130	4.8753430	9.0086032
С	2.5383390	5.1064612	6.5917411
С	3.0506269	6.1963500	9.1210541
С	2.9671278	6.4340602	6.7122229
С	3.2256705	6.9769215	7.9707299
Н	3.0883784	7.0182924	5.7993598
Н	3.5636019	8.0112783	8.0580563
Н	2.4685086	4.2426354	9.8842915
Н	3.2516095	6.6219047	10.1061780
0	1.6481729	2.2359259	8.6449058

0	2.3548587	5.2693986	4.2367889
0	0.2047030	-0.8117408	1.9454196
С	0.4092052	-1.4702616	5.6295393
Η	0.0311589	-0.6636463	5.0039102
С	-0.1739412	-2.7416541	5.5645754
С	0.3594629	-3.7997919	6.3132785
Н	-0.1157657	-4.7782141	6.2367566
С	-1.3641987	-3.0115628	4.7131540
0	-2.0494393	-4.0091404	4.7490075
0	-1.7063251	-1.8729690	3.9845869
С	-2.0489770	-1.9838082	2.6758559
С	-1.1803587	-2.8972501	1.8621817
С	-3.0480573	-1.2410746	2.1388325
С	-1.4396500	-2.9183439	0.4080892
С	-3.3852225	-1.3098355	0.7057665
С	-0.6084360	-3.6691250	-0.4305513
С	-2.5134899	-2.1882933	-0.1349250
С	-0.8673317	-3.7298683	-1.7968497
С	-2.7817293	-2.2770632	-1.5056135
С	-1.9726260	-3.0562860	-2.3288717
Н	-3.6218644	-1.7106544	-1.9062043
Η	-2.1945120	-3.1175513	-3.3940436
Н	0.2582520	-4.1675731	-0.0017237
Н	-0.1938002	-4.2818576	-2.4543204
0	-0.3763635	-3.6402770	2.4286426
0	-4.3505798	-0.7162306	0.2232690
S	0.2308675	0.0319179	0.7124193
0	1.2261709	1.1568091	0.9024129
0	-1.1506523	0.6090914	0.4919528
0	0.6308364	-0.7598197	-0.4902143
С	1.8728061	-2.4709774	-4.0355245
С	1.8911627	-3.6798782	-4.7451630
С	0.8045402	-4.0413777	-5.5417692
Н	0.8096226	-4.9935146	-6.0747608

Η	2.7623870	-4.3268473	-4.6402331
С	3.0470496	-2.1398868	-3.1833133
0	4.1083135	-2.7230752	-3.1830145
0	2.8303618	-0.9424363	-2.5037100
С	3.1797439	-0.8347913	-1.1958575
С	2.8055113	-2.0047140	-0.3348880
С	3.7396798	0.2968659	-0.7021526
С	3.0327972	-1.8447832	1.1161611
С	4.0607473	0.4469201	0.7289345
С	2.6118871	-2.8487568	1.9954916
С	3.6618709	-0.6891920	1.6165075
С	2.8509846	-2.7256055	3.3612335
С	3.9229896	-0.5871966	2.9876566
С	3.5320741	-1.6061438	3.8530479
Н	4.4181460	0.3110829	3.3548602
Н	3.7407218	-1.5131310	4.9187732
Η	2.0641633	-3.7002958	1.5973367
Η	2.4841575	-3.4890893	4.0489528
0	2.4228855	-3.0521508	-0.8601537
0	4.6583399	1.4276689	1.1740916
С	0.7713325	-1.6117941	-4.1375540
Η	0.7313594	-0.7016681	-3.5415081
С	-0.2951676	-1.9578937	-4.9757801
С	-0.2880806	-3.1821391	-5.6598772
Η	-1.1506086	-3.4407784	-6.2748543
С	-1.4890801	-1.0846070	-5.1257501
0	-2.5937180	-1.4540613	-5.4676303
0	-1.1825199	0.2162233	-4.7977350
С	-2.1766666	1.1714129	-4.9253854
С	-2.5761041	1.4919223	-6.3057399
С	-2.6239547	1.8185654	-3.8073448
С	-3.6498354	2.5169538	-6.4588406
С	-3.6264137	2.9132742	-3.9559015
С	-4.1468659	2.8098273	-7.7348743

С	-4.1543014	3.1954961	-5.3365201
С	-5.1475755	3.7678564	-7.8922824
С	-5.1547788	4.1610773	-5.5025235
С	-5.6528341	4.4442836	-6.7741093
Н	-5.5235888	4.6754094	-4.6142593
Н	-6.4363789	5.1943256	-6.8971969
Н	-3.7293508	2.2687975	-8.5849659
Η	-5.5371099	3.9904740	-8.8876041
0	-2.0469584	0.9577156	-7.2853412
0	-4.0297207	3.5727593	-3.0024207
I	1.5432655	2.2403488	3.2254550
I	-1.9253505	1.3038254	-1.8767173
I	4.1528228	1.9331827	-1.9554759
I	-4.1610539	0.0909282	3.3247104

PART VII: Fast scan X-ray data.

Fast scan crystal data for 3-carboxybenzoate of tetrabuthylammonium: $C_{24}H_{41}NO_4$, M = 407.58, triclinic, a = 12.483(9), b = 13.829(8), c = 14.388(12) Å, $\alpha = 78.81(2)^{\circ}$, $\beta = 83.38(4)^{\circ}$, $\gamma = 75.57(2)^{\circ}$, V = 2354(3) Å³, space group Pī, Z = 4, T = 120(2) K, $\lambda = 0.71073$ Å, D_{calcd} = 1.150 gcm³, $\mu = 0.077$ cm⁻¹, 13290 reflections measured by a FAST SCAN of 180 frames at a rate 1s/frame, 7559 unique, 2125 observed (28%), $R_{int} = 0.2955$, colourless crystals obtained by Et₂O/CH₃CN vapor diffusion, crystal structure solved by dual-space methods with all non hydrogen atoms refined anisotropically on F² using the programs SHELXT and SHELXL-2018, there is two independent molecules in the asymmetric unit, one of the independent molecules OH hydrogen atom is probably disordered over two positions, hydrogen atoms were included using a *riding* model, GOF = 0.981, *R* (Fo, I > 2 σ (I)) = 0.1303, *R*w (Fo², all data) = 0.3275. The 180 frames fast scan shows an electron density map that was preliminary refined for all non-hydrogen atoms, with a good convergence and a C-C bond precision of 0.01462 Å.

CCDC 1915912 contains the supplementary fast scan crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures</u>.

Figure S41. Fluorescence intensity of 4 (in CH_3CN) at each concentration of SO_4^{2-} added, normalized between the minimum fluorescence intensity, found at zero equiv of SO_4^{2-} ; and the maximum fluorescence intensity, found at $[SO_4^{2-}] = 1.34 \times 10^{-4} M$.

Figure S42. Fluorescence intensity of 4 (in CH₃CN) at each concentration of SO_4^{2-} added, normalized between the minimum fluorescence intensity, found at zero equiv of SO_4^{2-} ; and the maximum fluorescence intensity, found at $[SO_4^{2-}] = 1.39 \times 10^{-4} M$.