Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting information

## The synthesis and magnetic properties of a linear mixed-valence [Ni<sub>3</sub>]<sup>5+</sup> in anthyridine tri-nickel complex

Chang-Lin Hsieh<sup>a</sup>, Tsai-Jung Liu<sup>a</sup>, You Song<sup>b</sup>, Gene-Hsiang Lee<sup>a</sup>, Bih-Yaw Jin<sup>a</sup>, Tien-Sung Lin<sup>a</sup> and Shie-Ming Peng<sup>a,c\*</sup>

<sup>a</sup> Department of Chemistry, National Taiwan University

<sup>b</sup> State Key Laboratory of Coordinate Chemistry, School of Chemistry and Chemical Engineering, Nanjing Nantional Laboratory of Microstructures, Nanjing University, P. R. China.

<sup>c</sup> Institute of Chemistry, Academia Sinica

Corresponding author E-mail : smpeng@ntu.edu.tw

## Synthesis of [Ni<sub>3</sub>(dbay)<sub>4</sub>Cl<sub>2</sub>]I<sub>3</sub>



Synthesis of  $[Ni_3(dbay)_4Cl_2]I_3$ . The 1,13,14-Tetra-dibenz[*a,j*]anthracene (0.20 g, 0.071 mol), NiCl\_2 (0.1 g, 0.058 mol), NaB(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (0.22 g, 0.065 mol), and 10 mL n-BuOH were placed in a 25 mL round bottom flask. The mixure was then heated to ~150 °C and kept at the temperature for 48 hrs. The solvent was removed under reduce pressure. The dark red crystal was obtained with KI from diffusion of ether into DMF solution. Yield: 24 mg 10%.







Figure. S2 The IR spectrum of complex 1

| State                        | X-ray                 | Doublet        |
|------------------------------|-----------------------|----------------|
| Energy (eV)                  |                       | (-245554.4863) |
| elected Bond Distance<br>(Å) |                       |                |
| Ni(1)-Ni(2)                  | 2.403(2)              | 2.412          |
| Ni(2)-Ni(3)                  | 2.377(2)              | 2.388          |
| Ni(1)-N(1)                   | 2.138(6)              | 2.107          |
| Ni(1)-N(4)                   | 2.095(6)              | 2.108          |
| Ni(2)-N(2)                   | 2.047(5)              | 2.077          |
| Ni(2)-N(5)                   | 2.045(5)              | 2.077          |
| Ni(3)-N(3)                   | 2.072(6)              | 2.109          |
| N(3)-N(6)                    | 2.107(6)              | 2.112          |
| Ni(1)-Cl                     | 2.328(3)              | 2.342          |
| Ni(3)-Cl                     | 2.342(3)              | 2.356          |
| $\Gamma$ torsion angle       | (N1-Ni1-Ni2-N2) 19.97 | 18.48          |
| (°)                          | (N4-Ni1-Ni2-N5) 20.05 | 18.49          |
|                              | (N2-Ni2-Ni3-N3) 22.73 | 18.95          |
|                              | (N5-Ni2-Ni3-N6) 21.29 | 18.96          |
| Mulliken Analysis            | S=1/2                 |                |
| Atom                         | spin density          |                |

Table S1 Optimised structural parameters and Mulliken analysis for complex 1.

| S=1/2        |
|--------------|
| spin density |
| -1.27        |
| 0.81         |
| 1.23         |
|              |

All the DFT calculations are carried out with ORCA 3.0.3<sup>1</sup> and the BP86 exchange-correlation functional<sup>2-4</sup>, which had quite a good performance in these EMCAs (Extended metal-atom chain) molecules on geometries and electronic structures<sup>5-6</sup>. The def2-SVP basis set<sup>7</sup> and def2-SVP/J auxiliary basis set<sup>8,9</sup> are used for H and C atoms. For N, S atom, def2-TZVP(-f) basis set<sup>10</sup> and def2-TZVP/J auxiliary basis set<sup>8,9</sup> are used. And as for transition metal atoms, def2-TZVPP basis set<sup>10</sup> and def2-TZVPP/J auxiliary basis set<sup>8,9</sup> is chosen.



Figure. S3 (a) bond lengths (Å) of dbay ligand (b) complex 1 and (c)  $\pi$  bond order of C-C and C-N bonds in dbay ligands



Figure S4. Zeeman energy diagram of coupled three-spin magnetic centers. The couplings of  $S_A = 1$  and  $S_B = 3/2$  would give rise to three spin states (in bold face font): **S** =1/2, 3/2 and 5/2. The spin states of 3/2 and 5/2 further consist of Kramers' doublets as shown in the diagram.

| Parameters                     | $S_1 = 1/2$          | $S_2 = 3/2$               | S <sub>3</sub> = 5/2 |
|--------------------------------|----------------------|---------------------------|----------------------|
| $g_{\it eff}$ -values          | 2.01ª,<br>2.01, 2.23 | 2.12ª,                    | 2.15                 |
| g-Strain(broadening)           | 0.03                 | 0.08                      | 9.95                 |
| [D,E], cm <sup>-1</sup>        | _                    | 0.834 <i>,</i><br>-0.0067 | 0.007                |
| Linewidth, mT                  | 3                    | 7                         | 5                    |
| Weighing factor                | 70%                  | 29.9%                     | 0.1%                 |
| <sup>14</sup> N splitting, MHz | 28, 30, 28, 28       |                           |                      |

Table S2 Best fit EPR parameters of [Ni<sub>3</sub>(dbay)<sub>4</sub>Cl<sub>2</sub>]I<sub>3</sub> complex at 25K.

\* Note: (a) The g = 2.01 corresponding the transition from  $ms=-\frac{1}{2}$  to  $ms=+\frac{1}{2}$ , which could arise from S = 1/2, 3/2, and 5/2 spin states. The overall average g value easured in EPR is 2.09 in comparison to 2.12 obtained in SQUID measurement. (b) The population weighing factor is calculated by (individual weight/ total weight)x\*100%; individual weight: integrated intensity assumed in the simulation for three spin states, total weight: sum of three spin state weights.



Figure S5. Arrows in (a) and (b) indicate the normal vectors of surfaces filled with the same colours as the arrow. And the twist angles of pyridyl rings:  $\Phi$  (°) are defined by the angles of two neighbour normal vectors.  $\Phi_N$  and  $\Phi_{py}$  represent the average twist angel located on nitrogen atoms and the center of pyridyl rings. (c) and (d) Illustration of Torsion angle  $\angle$ N-M-M-N :  $\Gamma$  (°) viewed along the z-axis.

|                                                    | 1 0                   | -                      | + ( I ) · · =           |
|----------------------------------------------------|-----------------------|------------------------|-------------------------|
|                                                    | Average torsion angle | Average twist          | Average twist           |
|                                                    | : Γ (°)               | angle : $\Phi_{N}$ (°) | angle : $\Phi_{py}$ (°) |
| 1                                                  | 20.5                  | 16.67                  | 5.83                    |
| Ni <sub>3</sub> (dpa) <sub>4</sub> Cl <sub>2</sub> | 22.5                  | 27.09                  | 43.24                   |

Table S3 Comparison two angles between complex 1 and Ni<sub>3</sub>(dpa)<sub>4</sub>Cl<sub>2</sub>



Figure S6 Occupied orbitals near the HOMO of  $[Ni_3(dbay)_4Cl_2]^{3+}$ . Figure S6 is the orbital diagram of  $[Ni_3(dbay)_4Cl_2]^{3+}$ , and the blue line and red lines represent the occupied and unoccupied orbitals separately. The HOMO of  $[Ni_3(dbay)_4Cl_2]^{3+}$  is mainly constructed from  $dx^2-y^2$  orbitals of the Ni(2) and Ni(3) which is consistent with the experimental observation of asymmetric nickel chain and shorter Ni(2)-Ni(3) bond. Furthermore, this nonbonding  $\delta$  type HOMO also has M-N antibonding character, which agrees with the elongated Ni(2)-N<sub>av</sub> distances from Xray. The DFT calculations of one-electron oxidation state  $[Ni_3(dbay)_4Cl_2]^{4+}$  further verified the previous assumptions. After removing the electron from HOMO of  $[Ni_3(dbay)_4Cl_2]^{4+}$  become a C<sub>2</sub> symmetrical central nickel chain (Ni-Ni = 2.417 Å), and Ni-N bonds are also shortened with Ni(2)-N<sub>av</sub> changing from 2.077 to 1.996 Å(±0.117), and Ni(3) -N<sub>av</sub> from 2.109 to 2.069 Å(±0.04).

|       | Table S4 Optimiz    | ed Cartesian Coo | ordinates    |  |
|-------|---------------------|------------------|--------------|--|
| XYZ f | ile generated by or | ca_plot on Base  | Name=Ni3_S12 |  |
| Ni    | 13.330112           | 4.632753         | 34.032489    |  |
| Ni    | 13.330111           | 4.632747         | 31.620207    |  |
| Ni    | 13.330265           | 4.632914         | 29.232297    |  |
| Cl    | 13.330261           | 4.632716         | 36.374327    |  |
| Cl    | 13.330244           | 4.632727         | 26.876118    |  |
| Ν     | 11.822392           | 6.095963         | 33.856113    |  |
| Ν     | 11.450491           | 5.516874         | 31.631698    |  |
| Ν     | 11.242249           | 4.878291         | 29.402825    |  |
| Ν     | 14.792385           | 6.139172         | 33.857504    |  |
| Ν     | 14.214235           | 6.512323         | 31.633001    |  |
| Ν     | 13.575584           | 6.722974         | 29.404515    |  |
| С     | 11.490547           | 6.809654         | 34.922154    |  |
| Н     | 12.176748           | 6.723825         | 35.780903    |  |
| С     | 10.308841           | 7.607260         | 35.036574    |  |
| С     | 10.041536           | 8.344259         | 36.222982    |  |
| Н     | 10.768053           | 8.320716         | 37.050356    |  |
| С     | 8.863614            | 9.079568         | 36.331839    |  |
| Н     | 8.648009            | 9.650751         | 37.246969    |  |
| С     | 7.937113            | 9.086475         | 35.260683    |  |
| Н     | 7.006956            | 9.667931         | 35.351289    |  |
| С     | 8.184497            | 8.365665         | 34.088344    |  |
| Н     | 7.442632            | 8.400578         | 33.277429    |  |
| С     | 9.375157            | 7.612657         | 33.950416    |  |
| С     | 9.735632            | 6.840280         | 32.768172    |  |
| С     | 10.997967           | 6.149323         | 32.741895    |  |
| С     | 8.914185            | 6.714433         | 31.635141    |  |
| Н     | 7.921426            | 7.182841         | 31.635546    |  |
| С     | 9.337762            | 6.004749         | 30.499535    |  |
| С     | 10.673942           | 5.469488         | 30.520857    |  |
| С     | 8.512701            | 5.801248         | 29.315690    |  |
| С     | 7.172064            | 6.235861         | 29.184301    |  |
| Н     | 6.669793            | 6.769499         | 30.004121    |  |
| С     | 6.460958            | 5.981625         | 28.007495    |  |
| Н     | 5.418626            | 6.323678         | 27.921306    |  |
| С     | 7.060787            | 5.290834         | 26.926223    |  |
| Η     | 6.483642            | 5.103066         | 26.008539    |  |

| С | 8.379649  | 4.854973  | 27.029229 |
|---|-----------|-----------|-----------|
| Н | 8.863304  | 4.324340  | 26.194648 |
| С | 9.115722  | 5.102562  | 28.220268 |
| С | 10.483367 | 4.697906  | 28.331444 |
| Н | 10.988227 | 4.236580  | 27.466830 |
| С | 15.506902 | 6.469643  | 34.923523 |
| Н | 15.419855 | 5.783457  | 35.782145 |
| С | 16.306242 | 7.650085  | 35.038140 |
| С | 17.043848 | 7.916023  | 36.224484 |
| Н | 17.019468 | 7.189222  | 37.051604 |
| С | 17.780514 | 9.093031  | 36.333804 |
| Н | 18.351951 | 9.307627  | 37.249020 |
| С | 17.788306 | 10.020034 | 35.263071 |
| Н | 18.370796 | 10.949523 | 35.354009 |
| С | 17.066950 | 9.774035  | 34.090784 |
| Н | 17.102595 | 10.516172 | 33.280141 |
| С | 16.312502 | 8.584322  | 33.952486 |
| С | 15.539398 | 8.225430  | 32.770285 |
| С | 14.847051 | 6.963814  | 32.743461 |
| С | 15.414612 | 9.047513  | 31.637576 |
| Н | 15.884473 | 10.039601 | 31.638289 |
| С | 14.704096 | 8.625435  | 30.501983 |
| С | 14.167494 | 7.289772  | 30.522682 |
| С | 14.501751 | 9.451079  | 29.318333 |
| С | 14.937439 | 10.791456 | 29.187697 |
| Н | 15.470481 | 11.293119 | 30.008272 |
| С | 14.684655 | 11.503122 | 28.010915 |
| Н | 15.027437 | 12.545267 | 27.925415 |
| С | 13.994371 | 10.904147 | 26.928856 |
| Н | 13.807800 | 11.481688 | 26.011173 |
| С | 13.557214 | 9.585651  | 27.031167 |
| Н | 13.026398 | 9.102841  | 26.196227 |
| С | 13.803253 | 8.849052  | 28.222189 |
| С | 13.396757 | 7.481914  | 28.333042 |
| Н | 12.935333 | 6.977693  | 27.468103 |
| Ν | 14.837902 | 3.169556  | 33.856025 |
| Ν | 15.209843 | 3.748772  | 31.631642 |
| Ν | 15.418143 | 4.387435  | 29.402802 |

| Ν | 11.867892 | 3.126495  | 33.857601 |
|---|-----------|-----------|-----------|
| Ν | 12.446053 | 2.753311  | 31.633107 |
| Ν | 13.084775 | 2.542618  | 29.404646 |
| С | 15.169714 | 2.455793  | 34.922027 |
| Н | 14.483474 | 2.541534  | 35.780751 |
| С | 16.351432 | 1.658206  | 35.036443 |
| С | 16.618720 | 0.921152  | 36.222821 |
| Н | 15.892168 | 0.944616  | 37.050167 |
| С | 17.796671 | 0.185893  | 36.331690 |
| Н | 18.012260 | -0.385332 | 37.246798 |
| С | 18.723218 | 0.179087  | 35.260573 |
| Н | 19.653399 | -0.402331 | 35.351187 |
| С | 18.475848 | 0.899945  | 34.088262 |
| Н | 19.217749 | 0.865116  | 33.277376 |
| С | 17.285156 | 1.652904  | 33.950322 |
| С | 16.924688 | 2.425313  | 32.768097 |
| С | 15.662352 | 3.116271  | 32.741825 |
| С | 17.746151 | 2.551185  | 31.635082 |
| Н | 18.738906 | 2.082770  | 31.635484 |
| С | 17.322593 | 3.260902  | 30.499492 |
| С | 15.986424 | 3.796184  | 30.520820 |
| С | 18.147673 | 3.464433  | 29.315665 |
| С | 19.488295 | 3.029776  | 29.184267 |
| Н | 19.990529 | 2.496058  | 30.004059 |
| С | 20.199430 | 3.284062  | 28.007489 |
| Н | 21.241748 | 2.941974  | 27.921294 |
| С | 19.599643 | 3.974948  | 26.926254 |
| Н | 20.176810 | 4.162755  | 26.008592 |
| С | 18.280795 | 4.410847  | 27.029266 |
| Н | 17.797175 | 4.941548  | 26.194709 |
| С | 17.544693 | 4.163208  | 28.220277 |
| С | 16.177057 | 4.567883  | 28.331450 |
| Н | 15.672248 | 5.029289  | 27.466854 |
| С | 11.153341 | 2.796072  | 34.923614 |
| Н | 11.240412 | 3.482252  | 35.782236 |
| С | 10.353937 | 1.615674  | 35.038225 |
| С | 9.616314  | 1.349769  | 36.224566 |
| Н | 9.640727  | 2.076566  | 37.051688 |

| С | 8.879594  | 0.172796  | 36.333884 |
|---|-----------|-----------|-----------|
| Н | 8.308146  | -0.041776 | 37.249098 |
| С | 8.871761  | -0.754206 | 35.263150 |
| Н | 8.289230  | -1.683669 | 35.354086 |
| С | 9.593129  | -0.508238 | 34.090864 |
| Н | 9.557455  | -1.250376 | 33.280223 |
| С | 10.347634 | 0.681439  | 33.952568 |
| С | 11.120756 | 1.040291  | 32.770367 |
| С | 11.813183 | 2.301855  | 32.743554 |
| С | 11.245491 | 0.218208  | 31.637649 |
| Н | 10.775562 | -0.773847 | 31.638350 |
| С | 11.956054 | 0.640242  | 30.502070 |
| С | 12.492767 | 1.975863  | 30.522777 |
| С | 12.158360 | -0.185412 | 29.318420 |
| С | 11.722544 | -1.525744 | 29.187756 |
| Н | 11.189403 | -2.027353 | 30.008300 |
| С | 11.975314 | -2.237432 | 28.010985 |
| Н | 11.632431 | -3.279541 | 27.925463 |
| С | 12.665721 | -1.638524 | 26.928968 |
| Н | 12.852282 | -2.216078 | 26.011291 |
| С | 13.103007 | -0.320072 | 27.031309 |
| Н | 13.633912 | 0.162690  | 26.196397 |
| С | 12.856975 | 0.416550  | 28.222317 |
| С | 13.263598 | 1.783650  | 28.333191 |
| Н | 13.725108 | 2.287828  | 27.468275 |

## **References:**

- 1. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput Mol. Sci. 2012, 2, 73-78
- Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B* 1986, *33*, 8822.
  Perdew, J. P. Erratum: Density-functional approximation for the correlation energy of the
- inhomogeneous electron gas. Phys. Rev. B 1986, 34, 7406.
- 4. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098.
- 5. Brogden, D. W.; Berry, J. F. Heterometallic Multiple Bonding: Delocalized Three-Center σand  $\pi$  Bonding in Chains of 4d and 5d Transition Metals. *Inorg. Chem.* **2014**, *53*, 11354-11356
- 6. Brogden, D. W.; Berry, J. F. Heterometallic Second-Row Transition Metal Chain Compounds in Two Charge States: Syntheses, Properties, and Electronic Structures of [Mo-Mo-Ru]<sup>6+/7+</sup>

- In Two Charge States: Syntheses, Properties, and Electronic Structures of [Mo-Mo-Ru]<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/Mo-Ru<sup>6</sup>/M 1997, 97, 119-124.
- 10. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.