Supporting Information

Solvent-induced single-crystal-to-single-crystal transformation and tunable magnetic property of 1D azido-Cu(II) chains with carboxylate bridge

Xiangyu Liu,*,a,b Xiufang Ma,a Jinhui Yang,a Shuchang Luo,*,d Zheng Wang,a Jesús Ferrando-

Soria,^b Yulong Ma,^a Quan Shi,^{*,c} and Emilio Pardo^b

- ^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- ^b Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain.
- ^c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

^d School of Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, China

Contents

Table S1. Selected bond lengths (Å) and bond angles (°) for 1-3.

Table S2. Structural and magnetic parameters for Cu(II)-azido mixed-bridged compounds.

Figure S1. Magnetic cores used for computational study: (a) 1, (b) 2, (c) 3.

Figure S2. $\pi \cdots \pi$ stacking between benzene rings in 1.

Figure S3. TG curves for 1-3.

Figure S4. PXRD patterns for compounds: (a) 1, (b) 2, (c) 3.

Figure S5. (a) *M vs*. *H* plots at 2 K for compounds: (a) **1**, (b) **2**, (c) **3**.

Figure S6. χ'_M and $\chi''_M vs T$ plots for **1**.

Figure S7. $\chi_M vs T$ plots for **2** (a) and **3** (b).

Figure S8. (a) Hysteresis loops for 2 (a) and 3 (b) at different temperatures.

References

*Corresponding author

Dr. Xiangyu Liu

E-mail: xiangyuliu432@126.com

Prof. Quan Shi

E-mail: shiquan@dicp.ac.cn

Dr. Shuchang Luo

E-mail: luosc@gues.edu.cn

Table S1.	Selected b	ond lengths	(Å) a	nd bond	angles (°) for 1-3 .
-----------	------------	-------------	-------	---------	-----------	--------------------

1		2		3	3	
Cu(1)-O(1)#1	1.966(5)	Cu(1)-O(1)	1.957(7)	Cu(1)-O(2)	1.954(4)	
Cu(1)-O(1)	1.966(5)	Cu(1)-O(1)#1	1.957(7)	Cu(1)-O(1)	1.962(4)	
Cu(1)-N(1)#1	1.985(6)	Cu(1)-N(1)	1.998(9)	Cu(1)-N(1)#1	1.992(5)	
Cu(1)-N(1)	1.985(6)	Cu(1)-N(1)#1	1.998(9))	Cu(1)-N(1)	1.995(5)	
O(1)-C(6)	1.274(9)	Cu(1)-O(3)	2.495(8)	Cu(1)-O(3)	2.419(4)	
O(2)-C(6)	1.256(9)	Cu(1)-O(3)#1	2.515(8)	Cu(1)-O(3)#1	2.513(4)	
N(1)-N(2)	1.228(9)	O(1)-C(1)	1.300(13)	O(1)-C(1)	1.257(7)	
N(2)-N(3)	1.150(9)	O(2)-C(1)	1.289(13)	C(1)-O(2)#1	1.259(7)	
N(4)-N(5)	1.253(9)	O(3)-C(8)	1.414(16)	N(5)-N(6)	1.106(11)	
C(3)-C(13)	1.398(10)	N(1)-N(2)	1.195(12)	N(5)-N(4)	1.253(11)	
C(3)-C(12)	1.404(10)	N(2)-N(3)	1.174(13)	N(1)-N(2)	1.234(7)	
C(3)-C(6)	1.485(9)	N(4)-N(5)	1.29(2)	N(2)-N(3)	1.115(7)	
O(1)#1-Cu(1)-O(1)	180.0(3)	O(1)-Cu(1)-O(1)#1	180.0(4)	O(2)-Cu(1)-O(1)	177.78	
O(1)#1-Cu(1)-N(1)#1	88.2(2)	O(1)-Cu(1)-N(1)	91.3(3)	O(2)-Cu(1)-O(1)	90.65(19)	
O(1)-Cu(1)-N(1)#1	91.8(2)	O(1)#1-Cu(1)-N(1)	88.7(3)	O(1)-Cu(1)-N(1)#1	90.54(19)	
O(1)#1-Cu(1)-N(1)	91.8(2)	O(1)-Cu(1)-N(1)#1	88.7(3)	O(2)-Cu(1)-N(1)	89.42(19)	
O(1)-Cu(1)-N(1)	88.2(2)	O(1)#1-Cu(1)-N(1)#1	91.3(3)	O(1)-Cu(1)-N(1)	89.51(19)	
N(1)#1-Cu(1)-N(1)	180.0	N(1)-Cu(1)-N(1)#1	180.0	N(1)#1-Cu(1)-N(1)	176.20(1)	
O(2)#1-Cu(2)-O(2)#2	91.2(2)	O(1)-Cu(1)-O(3)	87.2(3)	O(2)-Cu(1)-O(3)	91.87(18)	
O(2)#2-Cu(2)-N(1)	88.8(2)	O(1)#1-Cu(1)-O(3)	92.8(3)	O(1)-Cu(1)-O(3)	86.34(17)	
O(2)#1-Cu(2)-N(1)#3	88.8(2)	N(1)-Cu(1)-O(3)	84.4(3)	N(1)#1-Cu(1)-O(3)	86.63(18)	
O(2)#2-Cu(2)-N(1)#3	91.2(2)	N(1)#1-Cu(1)-O(3)	95.6(3)	N(1)-Cu(1)-O(3)	97.16(17)	
N(1)-Cu(2)-N(1)#3	180.0	O(2)#2-Cu(2)-O(2)	180.0(4)	C(1)-O(1)-Cu(1)	129.7(4)	
C(6)-O(1)-Cu(1)	134.2(5)	O(2)#2-Cu(2)-N(1)	89.3(3)	O(1)-C(1)-O(2)#1	127.4(5)	
C(6)-O(2)-Cu(2)#4	131.2(5)	O(2)-Cu(2)-N(1)	90.7(3)	O(1)-C(1)-C(2)	116.3(5)	
N(2)-N(1)-Cu(1)	119.3(5)	O(2)#2-Cu(2)-N(1)#2	2 90.7(3)	N(2)-N(1)-Cu(1)#2	120.7(4)	
N(2)-N(1)-Cu(2)	113.5(5)	O(2)-Cu(2)-N(1)#2	89.3(3)	N(2)-N(1)-Cu(1)	119.7(4)	
Cu(1)-N(1)-Cu(2)	127.2(3)	N(1)-Cu(2)-N(1)#2	180.0	Cu(1)#2-N(1)-Cu(1)	104.5(2	
N(3)-N(2)-N(1)	179.0(9)	N(3)-N(2)-N(1)	176.1(16)	N(3)-N(2)-N(1)	176.4(9)	
N(6)-N(5)-N(4)	116.3(7)	N(6)-N(5)-N(4)	174(2)	C(8)-O(3)-Cu(1)	124.8(4)	
#1 -x+1,-y+2,-z+1 #2 x,y-1,z		#1 -x,-y+1,-z+1		#1-x+1/2,y+1/2,-z+1/2		
#3 -x+1,-y+1,-z+1 #4 x,y+1,z		#2 -x+1,-y+1,-z+1		#2 -x+1/2,y-1/2,-z+1/2		

Table S2. Structural and magnetic parameters for Cu(II)-azido mixed-bridged compounds.

Unit	Formula	Cu-N-Cu(°)	CuCu(Å) (intrachain)	$J^a(\mathrm{cm}^{-1})$	Ref.
2Cu	$[Cu_2(N_3)_2(NO_3)_2(L^1)_2]_n$	119.5	3.44	26	1

1Cu	$\{[Cu(Hpht)(N_3)]H_2O\}_n$	111.9	3.28	75	2
1Cu	[Cu(INO)(N ₃)(H ₂ O) _{0.5}] _n	106.6	3.22	80	3
1Cu	[Cu(NNO)(N ₃)(H ₂ O) _{0.5}] _n	124.3	3.52	48	3
1.5Cu	$[Cu_{1.5}(N_3)_2(isonic)]_n$	106.7	3.20	80	4
3Cu	$[Cu_3((R)-phea)_2(N_3)_6]_n$	101.0	2.04	15.07	-
3Cu	[Cu ₃ ((S)-phea) ₂ (N ₃) ₆] _n	101.8	5.04	15.27	5
1Cu	[Cu(N ₃)(nic)] _n	113.6	3.35	39.1	6
1.5Cu	[Cu _{1.5} (hnta)(N ₃) ₂ (H ₂ O)] _n	103.2	3.12	89	7
3Cu	[Cu ₃ (hnta) ₄ (N ₃) ₂ (H ₂ O) ₃] _n	116.2	3.39	69.7	7
1Cu	[Cu(N ₃)(tp)(CH ₃ OH)] _n	105.5	3.19	63	8
2Cu	[Cu ₂ (4-pya) ₂ (N ₃) ₂ (DMF)] _n	102.1	-	145	9
1Cu	[Cu(benzoate)(N ₃)] _n	126.8	3.54	33.90	10
1Cu	$[Cu(L^2)(N_3)]_n$	108.2	3.23	93.10	10
1Cu	[Cu(1-naphthoate)(N ₃)] _n	116.8	3.41	65.63	10
1Cu	[Cu(N ₃)(<i>p</i> -CPA)] _n	107.0	3.18	68.82	11
1Cu	[Cu(2-Clnic)(N ₃)(CH ₃ OH)] _n	110.3	3.29	81.22	12
3Cu	$[Cu_3(pyz)_2(N_3)_6]_n$	100.5	3.09	118.8	13
1Cu	[Cu(mptz)(N ₃) ₂] _n	103.3	3.15	65.4	14
1Cu	[Cu(4,3-pybz)(N ₃)] _n	109.4	3.25	63.9	15
2Cu	$[Cu_2(4,4-pybz)_3(N_3)]_n \cdot 3nH_2O$	101.1	3.08	93.6	15
4Cu	$[Cu_4(N_3)_8(Me\text{-}hmpz)_2]_n$	101.0	3.11	$J_1 = 40.57$ $J_2 = 28.47$	16
4Cu	$[Cu_4(N_3)_8(men)_2]_n$	102.2	3.40	$J_1 = 57.97$ $J_2 = -14.03$	16
5Cu	$[Cu_5(N_3)_{10}(N,N-dmen)_2]_n$	101.6	3.40	$J_1 = -494.99$ $J_2 = 88.60$	16
5Cu	$[Cu_5(N_3)_{10}(N,N'-dmen)_5]_n$	102.2	3.50	-	16
4Cu	$[Cu_4(N_3)_8(L^3)_2]_n$	102.9 137.1	3.12 4.13	$J_1 = -0.70$ $J_2 = 64.9$	17

4Cu	$[Cu_4(N_3)_6(L^4)_2(H_2O)_2]$	93.4 102.1 108.9	3.10 3.22	$J_1 = -81.0$ $J_2 = 112.4$	17
4Cu	$[Cu_4(N_3)_6(L^5)_2]_n$	91.8 102.2 107.3	3.18 3.09 3.18	$J_1 = -77.9$ $J_2 = 129.9$	17
1Cu	[Cu(4-fba)(N ₃)(C ₂ H ₅ OH)]	105.2	3.160	36.2	18
1Cu	[Cu(o-npa)(N ₃)(H ₂ O)]n	110.3	3.30	35.44	19
1Cu	[Cu(<i>p</i> -npa)(N ₃)]n	120.4	3.39	52.25	19
1Cu	[Cu(p-mpa)(N ₃)]n	122.4	3.46	-	19
1Cu	$[Cu(L)(N_3)]_2$	89.8	3.199	1.07	20
1Cu	$[(CuN_3(OH_2))_2(adp)]_n$	108.09	3.248	38.4	21
1Cu	[Cu(2-fba)(N ₃)(CH ₃ OH)] _n	106.54	3.206	63.54	22
1Cu	[Cu(2,6-dfba)(N ₃)(CH ₃ OH)] _n	110.08	3.261	96.29	22
1Cu	[Cu(o-fpa)(N ₃)(C ₂ H ₅ OH)] _n	106.8	3.218	87.08	23
1Cu	[Cu(p-fpa)(N ₃)(C ₂ H ₅ OH)] _n	104.8	3.168	66.05	23
1Cu	$[{Cu(2-ap)(N_3)_2(H_2O)}_2]_n$	103.3	3.20	66.7	24
3Cu	$[Cu_3(3-ap)_2(N_3)_6]_n$	101.3 102.2 99.0	3.01	J ₁ =30 J ₂ =67	24
1Cu	$[Cu(3-fba)(N_3)(C_2H_5OH)]_n$	105.95	3.192	59.74	25
2Cu	$[Cu_2(ip_2en)_2(\mu_{1,1}-N_3)_2(N_3)_2]$	101.77 102.51	3.3526	7.0	26
1Cu	catena-[Cu(ambza)($\mu_{1,1,3}$ -N ₃) ₂]	99.64	3.4103	7.7	26
1Cu	[Cu(4-tfmba)(N ₃)(CH ₃ OH)]	107.04	3.213	56.21	27
1Cu	[Cu(4-tfmba)(N ₃)(C ₂ H ₅ OH)]	106.53	3.180	68.94	27
1Cu	[Cu(4-tfmba)(N ₃)(C ₃ H ₇ OH)]	107.93	3.205	77.94	27

 J^a : intrachain coupling.

L1 = Me₃NCH₂CO₂, Hpht = hydrogen phthalate, INO = isonicotinate *N*-oxide, NNO = nicotinate *N*-oxide, isonic = isonicotinate, phea = 1-phenylethylamine, nic = nicotinate, hnta = 6-hydroxynicotinate, tp = terephthalate, 4-Hpya = 4-pyridylacrylic acid, L² = 2-methyl-benzoate, *p*-CPAH = *p*-cyanophenoxyacetic acid, 2-Clnic = 2-chloronicotinate, pyz = pyrazine, mptz = *N*-methyl-4-pyridinium tetrazolate, 4,3-pybz = 4-(3-pyridyl)benzoate, 4,4-pybz = 4-(4-pyridyl)benzoate, Me-hmpz = 1-methylhomopiperazine, men = *N*-methylethylenediamine, *N*,*N*-dmen =

N,*N*-dimethylethylenediamine, *N*,*N*'-dmen = *N*,*N*'-dimethylethylenediamine, L³ is the imine resulting from the condensation of pyridine-2-carboxaldehyde with *N*-methylethylenediamine, HL⁴ and HL⁵ are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with *N*,*N*-diethylethylenediamine and *N*-ethylethylenediamine respectively, 4-Hfba = 4-fluorobenzoic acid, *o*-Hfpa = *o*-fluorophenylacetic acid, *p*-Hfpa = *p*-fluorophenylacetic acid, *L* = N-benzyl ethylenediamine, adp = adipic acid, 2-Hfba = 2-fluorobenzoic acid, 2,6-Hdfba = 2,6-difluorobenzoic acid, *o*-Hnpa = *o*-nitrophenylacetic acid, *p*-Hnpa = *p*-nitrophenylacetic acid, and *p*-Hmpa = *p*-methylphenylacetic acid, 2-ap = 2-aminopyridine, 3-ap = 3-aminopyridine, and 4-ap = 4-aminopyridine, 3-fba = 3-fluorobenzoic acid, Et₃en = *N*,*N*, -triethyl-1,2-diaminoethane; ip₂en = *N*,*N*'-diisopropyl-1,2-diaminoethane; Et₂Meen = *N*,*N*-diethyl- *N*'-methyl-1,2-diaminoethane; and ambza = 2-aminobenzylamine, H₂L¹ = *N*,*N*-bis(3,5-dimethyl-2-hydroxybenzyl)-*N'*,*N'*-dimethyl-1,3-diaminopropane, H₂L² = *N*,*N*-bis(3,5-dimethyl-2-hydroxybenzyl)-*N'*,*N'*-diethyl-1,2-diaminoethane and H₂L³ = *N*,*N*-bis(3,5-dimethyl-2-hydroxybenzyl)-*N'*,*N'*-diethyl-1,2-diaminoethane, L = *N*,*N*-dimethyl-*N'*-benzyl-ethylenediamine, 4-tfriba = 4-trifluoromethyl benzoic acid. All of the J values were quoted using the Hamiltonian $H = -J\Sigma S_i \cdot S_{i+1}$.

Figure S1. Magnetic cores used for computational study: (a) 1, (b) 2, (c) 3.

Figure S2. $\pi \cdots \pi$ stacking between benzene rings in 1.

Figure S3. TG curves for 1-3.

Figure S4. PXRD patterns for compounds: (a) 1, (b) 2, (c) 3.

Figure S5. (a) *M vs*. *H* plots at 2 K for compounds: (a) **1**, (b) **2**, (c) **3**.

Figure S6. χ'_M and $\chi''_M vs T$ plots for **1**.

Figure S7. $\chi_M vs T$ plots for **2** (a) and **3** (b).

Figure S8. (a) Hysteresis loops for 2 (a) and 3 (b) at different temperatures.

References

- 1 A. Escuer, R. Vicente, F. A. Mautner and M. A. Goher. Inorg. Chem., 1997, 36, 1233-1236.
- 2 L. K. Thompson, S. S. Tandon, F. Lloret, J. Cano and M. Julve. Inorg. Chem., 1997, 36, 3301-3306
- 3 Z.He, Z.-M. Wang, S. Gao and C.-H. Yan. Inorg. Chem., 2006, 45, 6694-6705;
- 4 Y.-F. Zeng, F.-C. Liu, J.-P. Zhao, S. Cai, X.-H. Bu and J. Ribas. Chem. Commun., 2006, 2227-2229;
- 5 Z.-G. Gu, Y. Song, J.-L. Zuo and X.-Z. You. Inorg. Chem., 2007, 46, 9522-9524;
- 6 F.-C. Liu, Y.-F. Zeng, J.-P. Zhao, B.-W. Hu, E. C. Sanudo, J. Ribas and X.-H. Bu. *Inorg. Chem.*, 2007, **46**, 7698-7700
- 7 Y.-F. Zeng, J.-P. Zhao, B.-W. Hu, X. Hu, F.-C. Liu, J. Ribas and X.-H. Bu. Chem.-Eur. J., 2007, 13, 9924-9930.
- 8 Y.-F. Han, T.-W. Wang, Y. Song, Z. Shen and X.-Z. You. Inorg. Chem. Commun., 2008, 11, 207-210.
- 9 W.-W. Sun, X.-B. Qian, C.-Y. Tian and E.-Q. Gao. Inorg. Chim. Acta., 2009, 362, 2744-2748;
- 10 J.-P. Zhao, B.-W. Hu, E. C. Sañudo, Q. Yang, Y.-F. Zeng and X.-H. Bu. Inorg. Chem., 2009, 48, 2482-2489
- 11 G. E. Kostakis, K. C. Mondal, G. Abbas, Y. Lan, G. Novitchi, G. Buth, C. E. Ansonb and A. K. Powell. *CrystEngComm*, 2009, **11**, 2084-2088;
- 12 Q.-J. Su, S.-H. Li, L. Wang, C.-Z. Xie, Y. Ouyang and J.-Y. Xu. Inorg. Chem. Commun., 2010, 13, 1210-1212;
- 13 O. Sengupta, B. Gole, S. Mukherjee and P. S. Mukherjee. Dalton Trans., 2010, 39, 7451-7465
- 14 X.-B. Li, Y. Ma, X.-M. Zhang, J.-Y. Zhang and E.-Q. Gao. Eur. J. Inorg. Chem., 2011, 4738-4744
- 15 X.-M. Zhang, Z.-M. Hao, W.-X. Zhang and X.-M. Chen. Angew. Chem., 2007, 119, 3526-3529
- 16 S. Mukherjee, Y. P. Patil and P. S. Mukherjee. Dalton Trans., 2012, 41, 54-64;
- 17 S. Mukherjee and P. S. Mukherjee. Dalton Trans., 2013, 42, 4019-4030.

- 18 X.-Y. Liu, S.-P. Chen, T. Grancha, E. Pardo, H.-S. Ke, B. Yin, Q. Wei, G. Xie and S.-L. Gao. *Dalton Trans.*, 2014, **43**, 15359-15366;
- 19 L. Yang, S. Zhang, X.-Y. Liu, Q. Yang, Q. Wei, G. Xie and S.-P. Chen. CrystEngComm., 2014, 16, 4194-4201.
- 20 P. P. Chakrabarty, S. Giri, D. Schollmeyer, H. Sakiyama, M. Mikuriya, A. Sarkar and S. Saha. *Polyhedron.*, 2015, **89**, 49-54
- 21 Z. Setifi, M. Ghazzali, C. Glidewell, O. Pérez, F. Setifi, C. J. Gómez-García and J. Reedijk. *Polyhedron.*, 2016, 117, 244-248.
- 22 X.-Y. Liu, F.-F Li, X.-H. Ma, P.-P. Cen, S.-C. Luo, Q. Shi, S.-R. Ma, Y.-W. Wu, C.-C. Zhang, Z. Xu, W.-M. Song, G. Xie and S.-P. Chen. *Dalton Trans.*, 2017, **46**, 1207-1217.
- 23 X.-Y. Liu, X.-H Ma, P.-P, Cen, Y.-W. Wu, C.-C. Zhang, Q. Shi, W.-M. Song, G. Xie and S.-P. Chen, *Dalton Trans.*, 2017, **46**, 7556-7566.
- 24 P. Pandey, B. Kharediya, B. Elrez, J-P. Sutter, G. Bhargavi, M.V. Rajasekharan and S.S. Sunkari, *Dalton Trans.*, 2017, 46, 15908-15918.
- 25 X.-H. Ma, Y.-W. Wu, P.-P. Cen, S. Ma, C.-C. Zhang, S.-C. Luo, H.-L. Zhou, W.-M. Son and X.-Y. Liu, *New J. Chem.*, 2017, **41**, 9631-9638.
- 26 S.S. Massoud, M.M. Henary, L. Maxwell, A. Martin, E. Ruiz, R. Vicente, R.C. Fischer and F.A. Mautner, *New J. Chem.*, 2018, **42**, 2627-2639.
- 27 P.-P, Cen, W.-Z, Yuan, S.-C, Luo, G. Xie and S.-P. Chen, New J. Chem., 2019, 43, 601-608.