Supporting Information

Ligands directed assembly engineering of trapezoidal {Ti₅} building blocks stabilized by dimethylglyoxime

Qing-Rong Ding, Gui-Lan Xu, Lei Zhang* and Jian Zhang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

E-mail: LZhang@fjirsm.ac.cn

Content

1. Materials and Methods	S2
2. Syntheses	S2
3. Structural information and physical characterization of PTC-211 to 218	S4
4. General Methods for X-ray Crystallography	S12
5. A summary of crystallography data for PTC series	S13
6. References	S16

1. Materials and Methods

All reagents and solvents employed are commercially available and are used as received without further purification. Dimethylglyoxime were bought from Alfa Aesar. Ti(O^IPr)₄ (96%), Terephthalic acid, 2-aminoterephthalic acid. 2-Nitroterephthalic acid. 2,5-Dihydroxyterephthalic acid. 2.6-Naphthalenedicarboxylic acid, 4,4'-Biphenyldisulfonic acid, 1,2,4,5-Benzenetetracarboxylic acid and tetrakis(4-carboxyphenyl)porphyrin were bought from Admas-beta. The phase purity of products were confirmed by PXRD using a Rigaku Dmax2500 diffractometer with Cu K α radiation (λ = 1.54056 Å) with a step size of 5°/min. Thermogravimetric analyses (TGA) were performed using a NETSCHZ STA-449C thermoanalyzer with a heating rate of 10°C/min under a nitrogen atmosphere. Fourier transform infrared (FT-IR) spectra were recorded with a Spectrum One FT-IR Spectrometer in the 400-4000 cm⁻¹ range. The UV-vis diffuse reflection data were recorded at room temperature using a powder sample with BaSO₄ as a standard on a Perkin-Elmer Lambda950 UV-vis spectrophotometer and scanned at 200-800 nm in the reflectance mode with application of the Kubelka-Munk equation, (F(R) = (1 - 1)) $(R)^{2}/2R$, where R representing the reflectance. The elemental analyses were performed on an EA1110 CHNS-0 CE elemental analyzer.

2. Syntheses

Synthesis of PTC-211

Dimethylglyoxime (0.035 g, 0.3 mmol), terephthalic acid (0.033 g, 0.2 mmol), and isopropyl alcohol (6 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 100 °C for three days in a glass vial with a polyethylene screw cap. After cooling to and kept at room temperature for a week, yellow rod-like crystals of **PTC-211** were obtained (yield: 70% based on dimethylglyoxime). EA (%) calculated for $C_{82}H_{170}N_4O_{36}Ti_{10}$ (2266.90): C, 43.44; H, 7.56; N, 2.47. Found: C, 44.03; H, 7.34; N, 2.39. FT-IR (KBr pellet, cm⁻¹): 2975(m), 2926(w), 2867(w), 2357(w), 1688(m), 1554(s), 1370(s), 1220(s), 1006(s), 945(m), 858(s), 816(w), 738(s), 684(w), 615(w).

Synthesis of PTC-212

It was synthesized in the same way as that of **PTC-211** except that terephthalic acid was replaced by 2-aminoterephthalic acid (0.036 g, 0.2 mmol). Yellow rod-like crystals of **PTC-212** were obtained (yield: 72% based on dimethylglyoxime). EA (%) calculated for $C_{82}H_{171}N_5O_{36}Ti_{10}$ (2281.91): C, 43.16; H, 7.55; N, 3.07. Found: C, 43.28; H, 7.46; N, 2.98. FT-IR (KBr pellet, cm⁻¹): 3349(w), 2968(m), 2928(w), 2862(w), 2354(w), 2324(w), 1609(w), 1543(m), 1430(w), 1366(m), 1324(w), 1253(w), 1122(s), 995(s), 956(s), 858(s), 759(s), 627(s), 590(s), 558(s), 445(m).

Synthesis of PTC-213

It was synthesized in the same way as that of **PTC-211** except that terephthalic acid was replaced by 2-Nitroterephthalic acid (0.042 g, 0.2 mmol). Yellow rod-like crystals of **PTC-213** were obtained (yield: 40% based on dimethylglyoxime). EA (%) calculated for $C_{82}H_{169}N_5O_{38}Ti_{10}$ (2311.89): C, 42.60; H, 7.37; N, 3.03. Found: C, 42.76; H, 7.23; N, 2.96. FT-IR (KBr pellet, cm⁻¹): 2975(m), 2926(w), 2857(w), 2352(w), 1585(m), 1543(m), 1460(w), 1376(s), 1317(m), 1131(s), 1082(m), 995(s), 955(s), 857(m), 769(m), 604(s), 456(m).

Synthesis of PTC-214

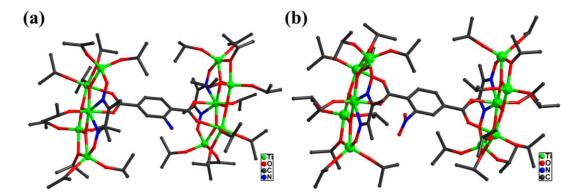
It was synthesized in the same way as that of **PTC-211** except that terephthalic acid was replaced by 2,6-Naphthalenedicarboxylic acid (0.043 g, 0.2 mmol). Yellow rod-like crystals of **PTC-214** were obtained (yield: 47% based on dimethylglyoxime). EA (%) calculated for $C_{86}H_{172}N_4O_{36}Ti_{10}$ (2316.95): C, 44.58; H, 7.48; N, 2.42. Found: C, 44.65; H, 7.41; N, 2.36. FT-IR (KBr pellet, cm⁻¹): 2989(w), 2356(w), 2324(w), 1619(m), 1541(m), 1492(w), 1404(s), 1355(s), 1195(s), 1068(m), 960(w), 924(w), 764(m), 647(w), 569(w), 461(m).

Synthesis of PTC-215

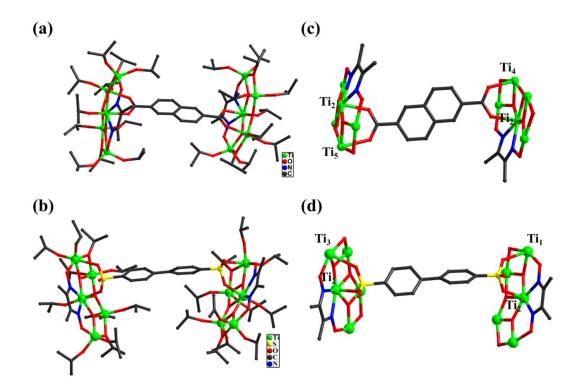
It was synthesized in the same way as that of **PTC-211** except that terephthalic acid was replaced by 4,4'-Biphenyldisulfonic acid (0.064 g, 0.2 mmol). Yellow rod-like crystals of **PTC-215** were obtained (yield: 77% based on Dimethylglyoxime). EA (%) calculated for $C_{86}H_{174}N_4O_{38}S_2Ti_{10}$ (2415.10): C, 42.77; H, 7.26; N, 2.32. Found: C, 42.84; H, 7.23; N, 2.28. FT-IR (KBr pellet, cm⁻¹): 2968(m), 2928(w), 2870(w), 2360(m), 2332(m), 1608(m), 1460(w), 1373(m), 1324(w), 1266(w), 1138(s), 992(s), 953(s), 845(m), 757(m), 718(m), 591(s), 463(m).

Synthesis of PTC-216

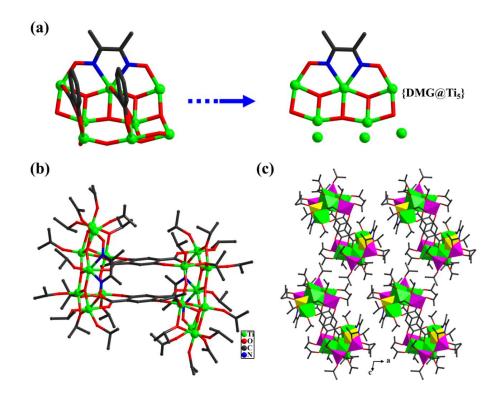
Dimethylglyoxime (0.035 g, 0.3 mmol), 2,5-Dihydroxyterephthalic acid (0.040 g, 0.2 mmol), and isopropyl alcohol (6 ml) were mixed at room temperature and then dropwise $Ti(O^{i}Pr)_{4}$ (0.5 ml, 1.6 mmol) was added. The resultant solution was heated at 100°C for three days. After cooled to room temperature, red block crystals of **PTC-216** were obtained (yield: 80% based on dimethylglyoxime). EA (%) calculated for $C_{111}H_{220}O_{57}N_{4}Ti_{16}$ (3288.79): C, 40.53; H, 6.74; N, 1.71. Found: C, 40.37; H, 6.78; N, 1.61. FT-IR (KBr pellet, cm⁻¹): 2971(m), 2932(w), 2873(w), 2364(w), 1611(m), 1552(m), 1445(s), 1366(m), 1327(m), 1249(m), 1220(w), 1141(s), 1005(s), 907(m), 828(m), 780(w), 672(w), 613(s), 466(m).

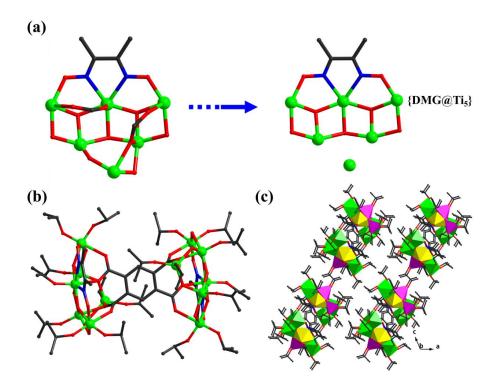

Synthesis of PTC-217

It was synthesized in the same way as that of **PTC-211** except that terephthalic acid was replaced by 1,2,4,5-Benzenetetracarboxylic acid (0.051 g, 0.2 mmol). Yellow rod-like crystals of **PTC-217** were obtained (yield: 61% based on dimethylglyoxime). EA (%) calculated for $C_{96}H_{198}N_4O_{46}Ti_{12}$ (2718.99) : C, 42.41; H, 7.34; N, 2.06. Found: C, 41.78; H, 6.93; N, 2.11. FT-IR (KBr pellet, cm⁻¹): 2968(m), 2925(w), 2857(w), 2362(w), 2331(w), 1719(m), 1581(m), 1420(m), 1360(m), 1247(m), 1121(s), 999(s), 956(s), 853(m), 820(w), 797(w), 763(m), 590(s), 503(w), 463(w).


Synthesis of PTC-218

It was synthesized in the same way as that of **PTC-211** except that terephthalic acid was replaced by meso-Tetra(4-carboxyphenyl)porphine (0.079 g, 0.1 mmol). Crimson block crystals of **PTC-218** were obtained (yield: 60% based on dimethylglyoxime). EA (%) calculated for $C_{196}H_{358}O_{72}N_{12}Ti_{20}$ (4992.30): C, 47.15; N, 3.37; H, 7.23. Found: C, 47.28; N, 3.21; H, 7.16. FT-IR (KBr pellet, cm⁻¹): 2975(m), 2916(w), 2857(w), 2358(w), 1605(m), 1543(m), 1468(w), 1390(s), 1331(m), 1135(s), 1077(m), 998(s), 959(s), 842(m), 803(w), 754(m), 725(w), 578(s), 451(m).


3. Structural information and physical characterization of PTC-211 to 218


Fig. S1 The sandwich-like {Ti₁₀} molecular cluster of **PTC-212** (a), **PTC-213** (b). All the H atoms are omitted for clarity. Color codes: green Ti; black C; red O; blue N.

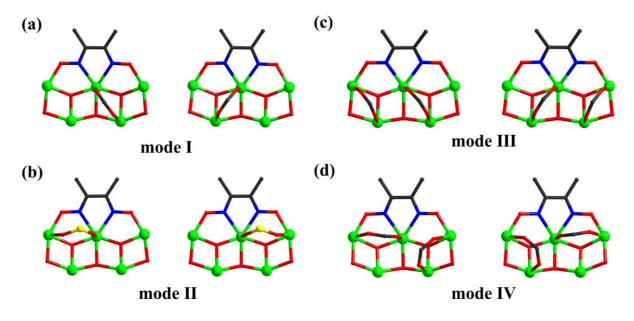

Fig. S2 The sandwich-like {Ti₁₀} molecular cluster of **PTC-214** (a, c) and **PTC-215** (b, d) with different coordination environments. All the H atoms are omitted for clarity. Color codes: green Ti; black C; red O; yellow S; blue N.

Fig. S3 The Synthetic and structural evolution of $\{Ti_8\}$ unit in **PTC-216** containing one $\{DMG@Ti_5\}$ unit (a); the sandwich-like $\{Ti_{16}\}$ molecular cluster of **PTC-216** (b); and the packing view of **PTC-216** along the b-axis (c). All the H atoms are omitted for clarity. Color codes: green Ti; black C; red O; blue N. Polyhedral color code: pink TiO₅; green TiO₆; yellow TiO₅N₂.

Fig. S4 The Synthetic and structural evolution of $\{Ti_6\}$ unit in **PTC-217** containing one $\{DMG@Ti5\}$ unit (a); the sandwich-like $\{Ti_{12}\}$ molecular cluster of **PTC-217** (b); and the packing view of **PTC-217** along the b-axis (c). All the H atoms are omitted for clarity. Color codes: green Ti; black C; red O; blue N. Polyhedral color code: pink TiO₅; green TiO₆; yellow TiO₅N₂.

Fig. S5 Bridging coordination modes of {DMG@Ti₅} unit. Color codes: green Ti; black C; red O; yellow S; blue N.

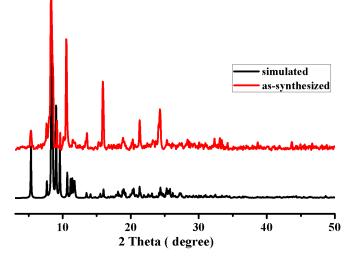


Fig. S6 The PXRD of PTC-211: simulated pattern (black), experimental (red).

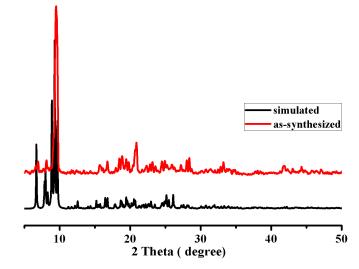


Fig. S7 The PXRD of PTC-212: simulated pattern (black), experimental (red).

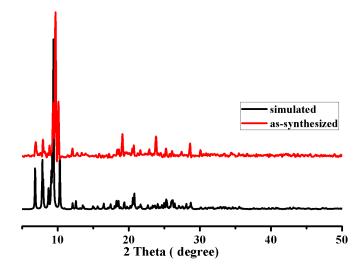


Fig. S8 The PXRD of PTC-213: simulated pattern (black), experimental (red).

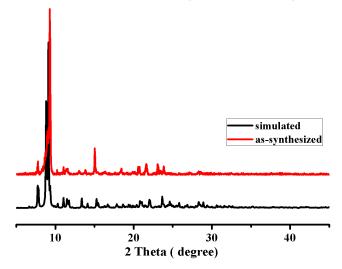


Fig. S9 The PXRD of PTC-214: simulated pattern (black), experimental (red).

Fig. S10 The PXRD of PTC-215: simulated pattern (black), experimental (red).

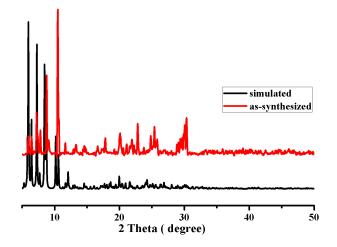


Fig. S11 The PXRD of PTC-216: simulated pattern (black), experimental (red).

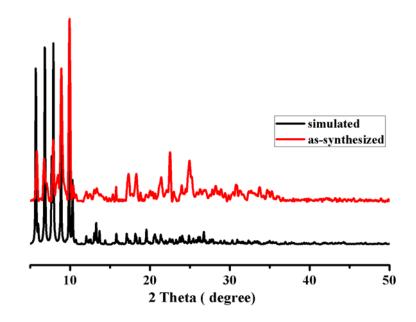


Fig. S12 The PXRD of PTC-217: simulated pattern (black), experimental (red).

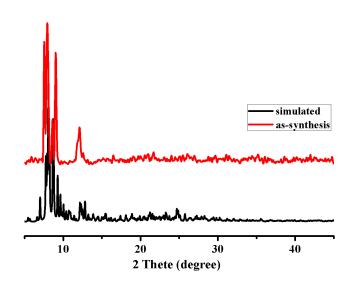


Fig. S13 The PXRD of PTC-218: simulated pattern (black), experimental (red).

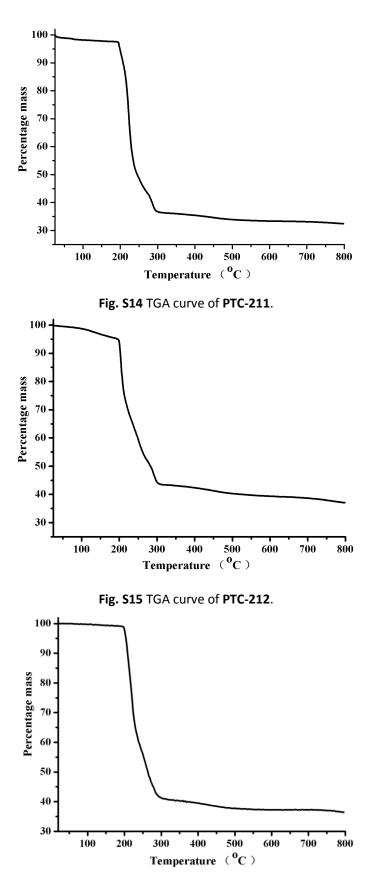


Fig. S16 TGA curve of PTC-213.

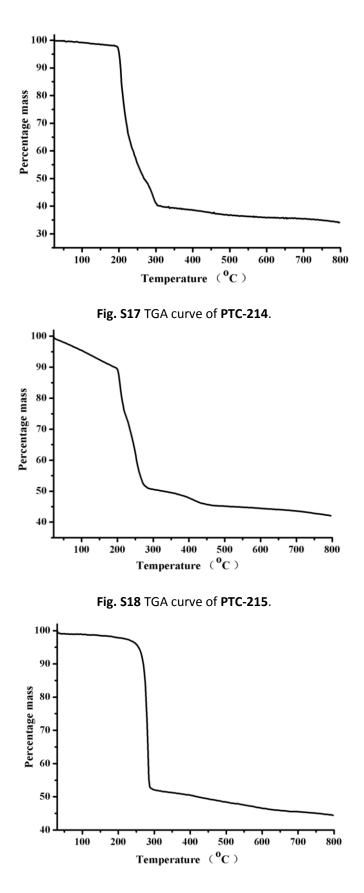


Fig. S19 TGA curve of PTC-216.

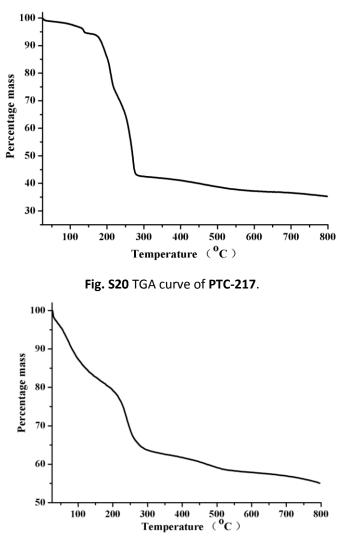


Fig. S21 TGA curve of PTC-218.

Table S1. Summary of bandgaps of the reported complexes.

No.	Complex	Bandgap	Stabilizing ligand	Bridging ligand	
1	PTC-211	2.31	DMG	BDC	
2	PTC-212	2.26	DMG	2-NH ₂ -BDC	
3	PTC-213	2.21	DMG	2-NO ₂ -BDC	
4	PTC-214	2.45	DMG	2.6-NDC	
5	PTC-215	2.27	DMG	BPDC	
6	PTC-216	1.78	DMG	DHPC	
7	PTC-217	2.34	DMG	BETC	
8	PTC-218	1.56	DMG	ТСРР	

4. General Methods for X-ray Crystallography

Crystallographic data of PTC-214 was collected on a Mercury single crystal diffractometer equipped with graphite-monochromatic Mo K α radiation ($\lambda = 0.71073$ Å). Crystallographic data of **PTC**-215, PTC-216 and PTC-217 were collected on a oxford XCalibur E CCD diffractometer equipped with graphite-monochromatic Mo K α radiation (λ = 0.71073 Å). While crystallographic data of **PTC-211, PTC-**212, PTC-213 and PTC-218 were collected on Supernova single crystal diffractometer equipped with graphite-monochromatic Cu K α radiation (λ = 1.54178 Å) at room temperature. The structures were solved with direct methods using SHELXS-97² and refined with the full-matrix least-squares technique based on F^2 using the SHELXL-97³. Non-hydrogen atoms were refined anisotropically, and all hydrogen atoms bond C were generated geometrically. The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1914954-1914961 for PTC-211 to PTC-218. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data request/cif.

No.	Complex	Forumla	M _w	Sp.	a(Å)	b(Å)	c(Å)	α (°)	β(°)	(°)	V(Å ³)	R/%
			(g/mol)	Gr.								
1.	PTC-211	Ti ₁₀ O ₆ (DMG) ₂ (BDC)(O ⁱ Pr) ₂₂	2266.90	P2 ₁ /n	10.9245(2)	23.0505(6)	23.9209(6)	90	92.241(2)	90	6019.0(2)	6.87
2.	PTC-212	Ti ₁₀ O ₆ (DMG) ₂ (2-NH ₂ -BDC)(O ⁱ Pr) ₂₂	2281.91	<i>P</i> -1	12.2992(10)	14.3904(15)	19.0996(17)	85.923(8)	85.061(7)	66.484(9)	3085.7(5)	8.05
3.	PTC-213	Ti ₁₀ O ₆ (DMG) ₂ (2-NO ₂ -BDC)(O ⁱ Pr) ₂₂	2311.89	<i>P</i> -1	11.8011(4)	13.8482(7)	18.9934(7)	82.343(4)	85.367(3)	70.160(4)	2891.6(2)	8.55
4.	PTC-214	Ti ₁₀ O ₆ (DMG) ₂ (2,6-NDC)(O ⁱ Pr) ₂₂	2316.95	P21/c	19.4857(4)	26.4883(7)	22.5872(5)	90	94.059(2)	90	11629.0(5)	7.71
5.	PTC-215	Ti ₁₀ O ₆ (DMG) ₂ (BPDC)(O ⁱ Pr) ₂₂	2415.10	<i>P</i> -1	13.1334(4)	23.0232(10)	23.9960(11)	63.989(4)	78.288(3)	82.373(3)	6377.2(5)	8.43
6.	PTC-216	Ti ₁₆ O ₁₂ (DMG) ₂ (DHPC) ₂ (O ⁱ Pr) ₂₈	3288.79	P-1	15.4097(7)	15.8879(6)	17.9294(7)	109.617(3)	96.107(3)	95.889(3)	4066.3(3)	6.78
7.	PTC-217	Ti ₁₂ O ₈ (DMG) ₂ (BETC)(O ⁱ Pr) ₂₄	2718.99	<i>P</i> -1	14.7714(7)	15.1120(7)	16.8580(7)	93.516(4)	111.982(4)	100.404(4)	3397.7(3)	7.19
8.	PTC-218	Ti ₂₀ O ₁₂ (DMG) ₄ (TCPP)(O ⁱ Pr) ₄₄	4992.30	P2 ₁ /c	22.1405(13)	26.7150(10)	25.288(3)	90	120.487(5)	90	12889.5(19)	12.53

5. Supplementary Table S2. A summary of crystallography data for PTC-211 to PTC-218. Detailed data are given in Tables S3 and S4.

	PTC-211	PTC-212	PTC-213	PTC-214
Empirical formula	$C_{82}H_{170}N_4O_{36}Ti_{10}$	$C_{82}H_{171}N_5O_{36}Ti_{10}$	$C_{82}H_{169}N_5O_{38}Ti_{10}$	C ₈₆ H ₁₇₂ N ₄ O ₃₆ Ti ₁₀
M _r	2266.90	2281.91	2311.89	2316.95
т/к	293(2)	293(2)	99.98(13)	293(2)
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	P2 ₁ /n	P-1	P-1	P2 ₁ /c
a/Å	10.9245(2)	12.2992(10)	11.8011(4)	19.4857(4)
b/Å	23.0505(6)	14.3904(15)	13.8482(7)	26.4883(7)
c/Å	23.9209(6)	19.0996(17)	18.9934(7)	22.5872(5)
α (°)	90	85.923(8)	82.343(4)	90
β (°)	92.241(2)	85.061(7)	85.367(3)	94.059(2)
γ (°)	90	66.484(9)	70.160(4)	90
V/Å ³	6019.0(2)	3085.7(5)	2891.6(2)	11629.0(5)
Z	2	1	1	4
Dc/mg m ⁻³	1.251	1.228	1.324	1.325
µ/mm ⁻¹	5.919	5.778	6.187	0.720
indep reflns [<i>l</i> >2σ(<i>l</i>)]	11931	12141	11438	18245
F(000)	2396	1205	1213	4904
GOF	1.032	1.065	0.989	1.094
$R_1^{a}, w R_2^{b} [l > 2\sigma(l)]$	0.0691, 0.2097	0.1334, 0.3760	0.0991, 0.2935	0.0771, 0.1818
R_1^{a} , w R_2^{b} (all data)	0.0955, 0.2353	0.1869, 0.4470	0.1234, 0.3370	0.1024, 0.1911

Table S3. Crystallographic data and structure refinement summar	ry for PTC-211 to PTC-214 .
---	---

 ${}^{a}R_{1} = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}| \cdot {}^{b}wR_{2} = [\sum w(|F_{o}|^{2} - |F_{c}|^{2})^{2} / \sum w(F_{o}^{2})]^{1/2}.$

	PTC-215	PTC-216	PTC-217	PTC-218
Empirical formula	$C_{86}H_{174}N_4O_{38}S_2Ti_{10}$	$C_{111}H_{220}O_{57}N_4Ti_{16}$	$C_{96}H_{198}N_4O_{46}Ti_{12}$	$C_{196}H_{358}N_{12}O_{72}Ti_{20}$
M _r	2415.10	3288.79	2718.99	4992.30
Т/К	293(2)	293(2)	293(2)	293(2)
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	P-1	P2 ₁ /c
a/Å	13.1334(4)	15.4097(7)	14.7714(7)	22.1405(13)
b/Å	23.0232(10)	15.8879(6)	15.1120(7)	26.7150(10)
c/Å	23.9960(11)	17.9294(7)	16.8580(7)	25.288(3)
α (°)	63.989(4)	109.617(3)	93.516(4)	90
β (°)	78.288(3)	96.107(3)	111.982(4)	120.487(5)
γ (°)	82.373(3)	95.889(3)	100.404(4)	90
V/Å ³	6377.2(5)	4066.3(3)	3397.7(3)	12889.5(19)
Z	2	1	1	2
Dc/mg m ⁻³	1.252	1.313	1.269	1.286
µ/mm ⁻¹	0.691	0.812	0.735	5.583
indep reflns [<i>l</i> >2σ(<i>l</i>)]	22977	14264	11911	24068
F(000)	2534	1674	1364	5268
GOF	1.174	1.074	1.090	1.087
R_1^{a} , w R_2^{b} [/ >2 σ (/)]	0.1219, 0.3269	0.1228, 0.3639	0.1115, 0.3081	0.1490, 0.3694
R_1^{a} , w R_2^{b} (all data)	0.2051, 0.4041	0.1695, 0.4190	0.1663, 0.3594	0.2870, 0.4859

 ${}^{a}R_{1} = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}|. {}^{b}wR_{2} = [\sum w(|F_{o}|^{2} - |F_{c}|^{2})^{2} / \sum w(F_{o}^{2})]^{1/2}.$

6. References

- (1) W. W. Wendlandt; H. G. Hecht, *Reflectance Spectroscopy*. Interscience: New York, 1966; p593.
- (2) Sheldrick, G. M. SADABS, *Program for area detector adsorption correction*. Institute for Inorganic Chemistry, University of Göttingen, Göttingen (Germany), 1996.
- (3) Sheldrick, G. M. SHELXL-97, *Program for solution of crystal structures*. University of Göttingen, Göttingen (Germany), 1997.