Synthesis of Copper(I) Cyclic (Alkyl)(Amino)Carbene Complexes with Potentially Bidentate N^N, N^S and S^S Ligands for Efficient White Photoluminescence

Alexander S. Romanov, Florian Chotard, Jahan Rashid, and Manfred Bochmann * School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK

SUPPORTING INOFORMATION

X-Ray Crystallography. Crystals of 3 suitable for X-ray diffraction study were obtained by layering a CH₂Cl₂ solution with hexane. The atoms C3, C17, C18, C19 and C20 were disordered over two positions with occupancies 0.45/0.55 for complex 3 with SADI restraint. Crystals of 4 and 5 were obtained by slow evaporation of Et₂O solution under argon atmosphere. The atoms C2, C3, C4, C17, C18, C19, C20, C40, C41 and C42 were disordered over two half-populated positions for complex 5 with SADI restraint. Crystals were mounted in oil on glass fiber and fixed on the diffractometer in a cold nitrogen stream. Data were collected using an Oxford Diffraction Xcalibur-3/Sapphire3-CCD diffractometer with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at 140 K. Data were processed using the CrystAlisPro-CCD and -RED software.1 The structure was solved by direct methods and refined by the full-matrix least-squares against F² in an anisotropic (for nonhydrogen atoms) approximation. All hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{iso}(H)$ parameters equal to 1.2 $U_{eq}(C_i)$, for methyl groups equal to 1.5 $U_{eq}(C_{ii})$, where $U(C_i)$ and $U(C_{ii})$ are respectively the equivalent thermal parameters of the carbon atoms to which the corresponding H atoms are bonded. All calculations were performed using the SHELXTL software.²

The principal crystallographic data for complex **3**: CCDC number 1915487, $C_{33}H_{39}CuN_2S_2$, Monoclinic, space group $P2_1/c$, a=15.6402(4) Å, b=10.5052(3) Å, c=18.5040(4) Å, $\beta=95.757(2)^\circ$, V=3024.94(13) Å³, Z=4, $d_{calc}=1.298$ g cm⁻³, $\mu=0.884$ mm⁻¹, red/plate, crystal size $0.46\times0.35\times0.13$ mm, F(000)=1248.0, $T_{min}/T_{max}=0.86995/1.00000$, 27770 reflections measured (5.884 ° $\leq 2\Theta \leq 55.996^\circ$), 7286 unique ($R_{int}=0.0283$, $R_{sigma}=0.0275$)

which were used in all calculations. The final R_1 was 0.0351 (I > 2 σ (I)) and wR_2 was 0.0875 (all data), GOF = 1.046, $\Delta \rho_{\min}/\Delta \rho_{\max} = 0.63/-0.67$.

The principal crystallographic data for complex **4**: CCDC number 1915489, $C_{47}H_{71}CuN_4$, Monoclinic, space group $P2_1/n$, a=14.3631(4) Å, b=17.2867(4) Å, c=18.3895(5) Å, $\beta=102.166(3)^\circ$, V=4463.4(2) Å³, Z=4, $d_{calc}=1.124$ g cm⁻³, $\mu=0.524$ mm⁻¹, yellow/block, crystal size $0.38\times0.23\times0.16$ mm, F(000)=1640.0, $T_{min}/T_{max}=0.89063/1.00000$, 45078 reflections measured $(6.208\ ^\circ \le 2\Theta \le 56.000\ ^\circ)$, 10763 unique $(R_{int}=0.0358, R_{sigma}=0.0324)$ which were used in all calculations. The final R_1 was 0.0354 (I $> 2\sigma(I)$) and wR_2 was 0.0963 (all data), GOF=1.004, $\Delta\rho_{min}/\Delta\rho_{max}=0.40/-0.29$.

The principal crystallographic data for complex **5**: CCDC number 1915488, $C_{45}H_{66}CuN_3$, Triclinic, space group P-I, a = 11.8424(2) Å, b = 13.8008(4) Å, c = 15.1018(4) Å, $\alpha = 110.681(2)^\circ$, $\beta = 93.732(2)^\circ$, $\gamma = 111.814(2)^\circ$, V = 2088.29(10) Å³, Z = 2, $d_{calc} = 1.133$ g cm⁻³, $\mu = 0.555$ mm⁻¹, colourless/block, crystal size $0.37 \times 0.29 \times 0.23$ mm, F(000) = 772.0, T_{min}/T_{max} 0.92522/1.00000, 20795 reflections measured $(5.92^\circ \le 2\Theta \le 55.998^\circ)$, 10073 unique ($R_{int} = 0.0280$, $R_{sigma} = 0.0453$) which were used in all calculations. The final R_1 was 0.0424 (I > $2\sigma(I)$) and wR_2 was 0.1054 (all data), GOF = 1.035, $\Delta \rho_{min}/\Delta \rho_{max} = 0.87/-0.50$.

Table S1. UV/vis absorption data in THF solution at 298 K.

Complex	UV/vis deaerated THF nm $(10^3 \ \epsilon/\text{M}^{-1} \text{ cm}^{-1})$,
1	282 (15.1), 331 (23.4)
2	272 (8.5), 365 (3.28)
3	286 (17.1), 362 (19.3)
4	250 (14.3), 285 (5.74)
5	272 (14.3), 359 (3.11)
6	266 (16.6), 327 (16.1)

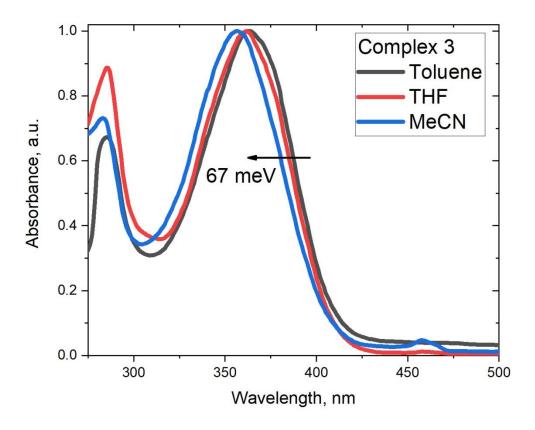
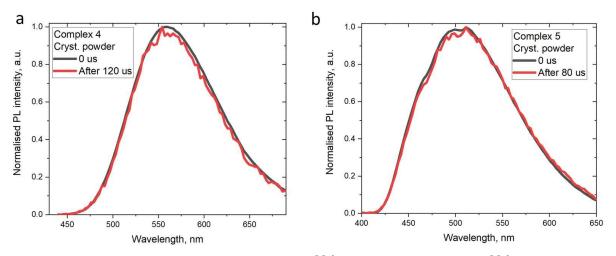
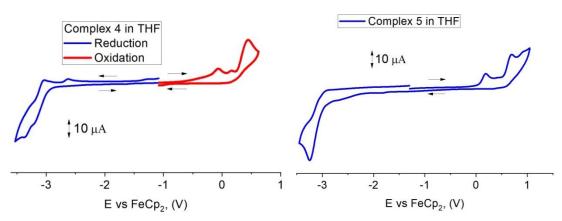




Figure S1. UV-Vis spectra for copper complex 3 in different solvents.

Figure S2. Time-resolved emission spectra for $^{Me2}LCuN_2CNMe_2$ (4) and $^{Me2}LCuN_2CH$ (5) Excited at 380 nm at 298K.

Figure S3. Full range cyclic voltammograms for (^{Me}L)Cu(Guanidinate) (**4**, left) and (^{Me}L)Cu(Formamidinate) (**5**, right), recorded using a glassy carbon electrode in THF solution (1.4 mM) with [n-Bu₄N]PF₆ as supporting electrolyte (0.13 M), scan rate 0.1 Vs⁻¹.

^[1] Programs CrysAlisPro, Oxford Diffraction Ltd., Abingdon, UK (2010).

^{[&}lt;sup>2</sup>] a. Sheldrick, G.M. SHELX-97 and SHELXL – Programs for crystal structure determination (SHELXS) and refinement (SHELXL), *Acta Cryst.* **2008**, *A64*, 112. b. G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open Access).