Electronic supplementary information

Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on electrocatalytic reduction of proton caused

by a pendant basic group

Wei Zhong, ${ }^{*}{ }^{\text {a }} \mathrm{Li} \mathrm{Wu},{ }^{\text {a }}$ Weidong Jiang, ${ }^{\text {b }}$ Yulong Li, ${ }^{\text {b }}$ Natarajan Mookan ${ }^{\text {a }}$ and Xiaoming Liu ${ }^{* a}$
${ }^{\text {a }}$ College of Biological, Chemical Sciences and Engineering Jiaxing University

Jiaxing, Zhejiang 314001

China
${ }^{\mathrm{b}}$ Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan

Sichuan University of Science \& Engineering

Zigong, Sichuan 643000
China

Tel./Fax: +86(0)573 83643937

E-mail: weizhong@mail.zjxu.edu.cn; xiaoming.liu@mail.zjxu.edu.cn

Fig. S1 CVs of complex $2\left(c=2.86 \mathrm{mmol} \mathrm{L}^{-1}\right)$ in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}\left[\mathrm{NnBu}_{4}\right] \mathrm{BF}_{4} / \mathrm{MeCN}$ solution upon successive addition of $\mathrm{CF}_{3} \mathrm{COOH}$ (scanning rate $=0.1 \mathrm{~V} \mathrm{~s}^{-1}$): $0,2,4,6$, $8,10,12,14$ and 16 equivalents.

Fig. S2 CVs of complexes 3 (up) and 4 (down) ($c=2.86 \mathrm{mmol} \mathrm{L}^{-1}$) in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ $\left[\mathrm{NnBu}_{4}\right] \mathrm{BF}_{4} / \mathrm{MeCN}$ solution upon successive addition of $\mathrm{CF}_{3} \mathrm{COOH}$ (scanning rate $=$ $0.1 \mathrm{~V} \mathrm{~s}^{-1}$): $0,2,4,6,8,10,12,14$ and 16 equivalents.

Fig. S3 Plots of $k_{\text {obs }}(T O F)$ against the addition of $\mathrm{CF}_{3} \mathrm{COOH}$ of complexes $\mathbf{2 - 4}$ (c $=$ $2.86 \mathrm{mmol} \mathrm{L}^{-1}$) at a scanning rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$.

Fig.S4 CVs of complex 3 with 1 eq. of various acids in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}\left[\mathrm{NBut}_{4}\right] \mathrm{BF}_{4}$ / acetonitrile at room temperature.

Fig.S5 CVs of complex 4 with 1 eq. of various acids in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}\left[\mathrm{NBut}_{4}\right] \mathrm{BF}_{4} /$ acetonitrile at room temperature.

Fig.S6 CVs of complex 5 with 1 eq. of various acids in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}\left[\mathrm{NBut}_{4}\right] \mathrm{BF}_{4} /$ acetonitrile at room temperature.

Fig.S7 FTIR spectra of complex $\mathbf{2}$ with the addition of HBF_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig.S8 Comparison of CVs of $\mathbf{2}, \mathbf{2}$ with the addition of HBF_{4} and $\mathbf{2 H}$.

Comparison of the catalytic turnover frequency (TOF) between complexes $\mathbf{2}$ and $\mathbf{3}$ in the presence of $\mathrm{CF}_{3} \mathrm{COOH}$.

As shown in Fig. 3, the catalytic peak current ($\mathrm{i}_{\text {cat }}$) increased almost linearly with acid concentration, indicating that at fixed catalyst concentration the reaction is first order with respect to acid concentration. Thus, the catalytic turnover frequency (TOF) of complexes 2-4 can be calculated by the following equation ${ }^{[1]}$:

$$
\frac{i_{\text {cat }}}{i_{\mathrm{p}}}=\frac{n}{0.446} \sqrt{\frac{R T k_{\mathrm{obs}}}{F v}}
$$

where $i_{\text {cat }}$ is the peak current in presence of acid, i_{p} is the peak current in the absence of acid, n is the number of electrons involved in the catalytic process, $\mathrm{k}_{\mathrm{obs}}$ (turn over frequency, TOF) is the observed rate constant, R is ideal gas constant, T is temperature in Kelvin (298 K), F is Faraday's constant, and v is the scanning rate. According to this equation, the values of TOF for complexes 2-4 with different equivalent of $\mathrm{CF}_{3} \mathrm{COOH}$ can be calculated and showed in Fig. S3.

Table S1. Crystallographic details for complexes 2-4.

Complex	2	3	4
CCDC number	1847707	1847708	1847709
Chemical formula	$2\left(\mathrm{C}_{24} \mathrm{H}_{10} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}_{2}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$	$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$
Formula weight	1409.25	720.23	632.21
Crystal size (mm)	$0.30 \times 0.24 \times 0.21$	$0.35 \times 0.28 \times 0.25$	$0.42 \times 0.33 \times 0.28$
Temperature (K)	296(2)	296(2)	293(2)
Radiation	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	P2(1)/n	P2(1)/c	Pnma
$a(\AA)$	17.687(4)	12.040(2)	12.3381(6)
$b(\AA)$	16.553(4)	17.033(3)	19.4322(10)
$c(\AA)$	18.948(4)	15.155(3)	10.9337(8)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	91.001(3)	101.646(2)	90
$\gamma\left({ }^{\circ}\right)$	90	90	90
$\mathrm{V}\left(\AA^{3}\right)$	5547(2)	3043.8(9)	2621.4(3)
Z	4	4	4
$\rho($ calc $)\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.688	1.572	1.602
F (000)	2824	1456	1280
Absorp.coeff. $\left(\mathrm{mm}^{-1}\right)$	1.352	1.152	1.314
θ range (deg)	2.30 to 28.32	2.31 to 29.01	3.25 to 26.00
Reflns collected	$51779\left(\mathrm{R}_{\text {int }}=0.0589\right)$	$28548\left(\mathrm{R}_{\text {int }}=0.0265\right)$	$7106\left(\mathrm{R}_{\text {int }}=0.0308\right)$
Indep. reflns	13688	7894	2656
Refns obs. [I>	8328	5753	1930
$2 \sigma(I)]$			
Data/restr/paras	13688/0/748	7894/0/399	2656/0/181
GOF	1.016	1.036	1.092

$\mathrm{R}_{1} / \mathrm{wR}_{2}[I>2 \sigma(I)]$	$0.0479 / 0.1085$	$0.0375 / 0.0952$	$0.0452 / 0.0935$
$\mathrm{R}_{1} / \mathrm{wR}_{2}$ (all data)	$0.0957 / 0.1276$	$0.0603 / 0.1125$	$0.0730 / 0.1058$
Large peak and hole	$1.233 /-0.958$	$0.474 /-0.358$	$0.719 /-0.364$
$\left(\mathrm{e} / \AA^{3}\right)$			

Reference

1. M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois and D. L. DuBois, Science, 2011, 333, 863-866.
