Electronic supplementary information

Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on electrocatalytic reduction of proton caused by a pendant basic group

Wei Zhong,^{*a} Li Wu,^a Weidong Jiang,^b Yulong Li,^b Natarajan Mookan^a and Xiaoming Liu^{*a}

^a College of Biological, Chemical Sciences and Engineering

Jiaxing University

Jiaxing, Zhejiang 314001

China

^b Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan

Sichuan University of Science & Engineering

Zigong, Sichuan 643000

China

Tel./Fax: +86(0)573 83643937

E-mail: weizhong@mail.zjxu.edu.cn; xiaoming.liu@mail.zjxu.edu.cn

1

Fig. S1 CVs of complex **2** (c = 2.86 mmol L^{-1}) in 0.1 mol L^{-1} [NnBu₄]BF₄/MeCN solution upon successive addition of CF₃COOH (scanning rate = 0.1 V s⁻¹): 0, 2, 4, 6, 8, 10, 12, 14 and 16 equivalents.

Fig. S2 CVs of complexes **3** (up) and **4** (down) (c = 2.86 mmol L⁻¹) in 0.1 mol L⁻¹ [NnBu₄]BF₄/MeCN solution upon successive addition of CF₃COOH (scanning rate = 0.1 V s⁻¹): 0, 2, 4, 6, 8, 10, 12, 14 and 16 equivalents.

Fig. S3 Plots of k_{obs} (*TOF*) against the addition of CF₃COOH of complexes **2–4** (c = 2.86 mmol L⁻¹) at a scanning rate of 0.1 V s⁻¹.

Fig.S4 CVs of complex **3** with 1 eq. of various acids in 0.1 mol L^{-1} [NBut₄]BF₄ / acetonitrile at room temperature.

Fig.S5 CVs of complex **4** with 1 eq. of various acids in 0.1 mol L^{-1} [NBut₄]BF₄ / acetonitrile at room temperature.

Fig.S6 CVs of complex **5** with 1 eq. of various acids in 0.1 mol L^{-1} [NBut₄]BF₄ / acetonitrile at room temperature.

Fig.S7 FTIR spectra of complex 2 with the addition of HBF₄ in CH₂Cl₂.

Fig.S8 Comparison of CVs of 2, 2 with the addition of HBF₄ and 2H.

Comparison of the catalytic turnover frequency (TOF) between complexes 2 and 3 in the presence of CF₃COOH.

As shown in Fig. 3, the catalytic peak current (i_{cat}) increased almost linearly with acid concentration, indicating that at fixed catalyst concentration the reaction is first order with respect to acid concentration. Thus, the catalytic turnover frequency (*TOF*) of complexes 2–4 can be calculated by the following equation ^[1]:

$$\frac{i_{\rm cat}}{i_{\rm p}} = \frac{n}{0.446} \sqrt{\frac{RTk_{\rm obs}}{Fv}}$$

where i_{cat} is the peak current in presence of acid, i_p is the peak current in the absence of acid, n is the number of electrons involved in the catalytic process, k_{obs} (turn over frequency, *TOF*) is the observed rate constant, R is ideal gas constant, T is temperature in Kelvin (298 K), F is Faraday's constant, and v is the scanning rate. According to this equation, the values of *TOF* for complexes **2–4** with different equivalent of CF₃COOH can be calculated and showed in Fig. S3.

Complex	2	3	4
CCDC number	1847707	1847708	1847709
Chemical formula	$2(C_{24}H_{10}Fe_2N_2O_{10}S_2)\bullet CH_2Cl_2$	$C_{28}H_{16}Fe_2O_{12}S_2$	$C_{26}H_{16}Fe_2O_8S_2$
Formula weight	1409.25	720.23	632.21
Crystal size (mm)	0.30×0.24×0.21	0.35×0.28×0.25	0.42×0.33×0.28
Temperature (K)	296(2)	296(2)	293(2)
Radiation	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	P2(1)/n	P2(1)/c	Pnma
$a(\text{\AA})$	17.687(4)	12.040(2)	12.3381(6)
$b(\text{\AA})$	16.553(4)	17.033(3)	19.4322(10)
$c(\text{\AA})$	18.948(4)	15.155(3)	10.9337(8)
α(°)	90	90	90
β (°)	91.001(3)	101.646(2)	90
γ(°)	90	90	90
V(Å ³)	5547(2)	3043.8(9)	2621.4(3)
Z	4	4	4
$\rho(calc)$ (g/cm ³)	1.688	1.572	1.602
F (000)	2824	1456	1280
Absorp.coeff.	1.352	1.152	1.314
(mm ⁻¹)			
θ range (deg)	2.30 to 28.32	2.31 to 29.01	3.25 to 26.00
Reflns collected	51779 (R _{int} = 0.0589)	28548 ($R_{int} = 0.0265$)	7106 ($R_{int} = 0.0308$)
Indep. reflns	13688	7894	2656
Refns obs. [I >	8328	5753	1930
$2\sigma(I)$]			
Data/restr/paras	13688/0/748	7894/0/399	2656/0/181
GOF	1.016	1.036	1.092

 Table S1. Crystallographic details for complexes 2–4.

$\mathbf{R}_{1}/\mathbf{w}\mathbf{R}_{2}\left[I \geq 2\sigma(I)\right]$	0.0479/0.1085	0.0375/0.0952	0.0452/0.0935
R_1/wR_2 (all data)	0.0957/0.1276	0.0603/0.1125	0.0730/0.1058
Large peak and hole	1.233/-0.958	0.474/-0.358	0.719/-0.364
(e/Å ³)			

Reference

1. M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois and D. L. DuBois, *Science*, 2011, **333**, 863-866.