Field-induced slow magnetic relaxation in two-dimensional and three-dimensional Co(II) coordination polymers

Deyun Ma,^b Guo Peng,^{*ac} Ying-Ying Zhang^c and Bo Li^{*d}

^aCollege of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing

211816, P. R. China. Email: guopengnjtech@foxmail.com

^bSchool of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing

526061, P. R. China.

^cHerbert Gleiter Institute of Nanoscience, School of Materials Science and

Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R.

China. Email: guopeng@njust.edu.cn

^dCollege of Chemistry and Pharmaceutical Engineering, Nanyang Normal University,

Nanyang 473061, P. R. China. Email: libozzu0107@163.com

Fig. S1 IR spectra for complexes 1 (a) and 2 (b).

Fig. S2 Experimental and simulated PXRD patterns for complexes 1 (a) and 2 (b).

Table S1 Continuous shape measures (CShM) for complexes 1 and 2

	1	2
HP-6 (<i>D</i> _{6h})	28.915	32.784
PPY-6 (<i>C</i> _{5V})	22.659	27.544
OC-6 (<i>O</i> _h)	2.289	0.211
TPR-6 (D_{3h})	14.539	14.727
JPPY-6 (<i>C</i> _{5v})	26.170	31.278
HP-6 = Hexagon, Pl	PY-6 = Pentagona	al pyramid, OC-6 =
Octahedron, TPR-6	= Trigonal prism,	JPPY-6 = Johnson
pentagonal pyramid.	J2	

Table S2 Hydrogen Bonds of 1 and	2
----------------------------------	---

D–H···A	d(D–H)	$d(H \cdots A)$	$d(D \cdots A)$	∠(DHA)
		1		
O(5)–H(5A)····O(4)a	0.87	2.10	2.830(5)	142
$C(5)-H(5B)\cdots O(2)$	0.89	1.94	2.712(5)	145
		2		
O(3)−H(3)····O(1)b	0.84	1.76	2.600(4)	173
O(6)-H(6A)····O(3)c	0.84	1.86	2.666(4)	162
$O(6)-H(6B)\cdots O(4)$	0.84	1.86	2.596(4)	144

Symmetry codes: For **1**, a: 1+x, 1+y, z. For **2**, b: -1+x, y, z; c: 0.5+x, .05-y, 0.5+z.

Fig. S3 The O-H…O hydrogen bonds (green dash lines) in the 3D supramolecular

structure of 1.

Fig. S4 The O-H···O hydrogen bonds and C-H··· π stacking interactions (green dash

lines) in the 3D framework of **2**.

Fig. S5 M vs. HT^{-1} plots for **1** (a) and **2** (b).

Fig. S6 Frequency dependence of in-phase (a) and out-of-phase (b) ac susceptibility

Fig. S7 Frequency dependence of in-phase (a) and out-of-phase (b) ac susceptibility data under different dc fields at 2 K for **2**.

T/K	$\chi_{\rm S}$ / cm ⁻³ mol ⁻¹	$\chi_{\rm T}$ / cm ⁻³ mol ⁻¹	τ / s	α	R
2.0	7.56E-01	8.31E-01	5.50E-04	3.13E-02	4.01E-04
2.2	7.01E-01	7.74E-01	4.91E-04	2.94E-02	3.18E-04
2.4	6.52E-01	7.24E-01	4.35E-04	3.42E-02	2.23E-04
2.6	6.12E-01	6.82E-01	4.00E-04	2.91E-02	2.45E-04
2.8	5.75E-01	6.44E-01	3.64E-04	3.42E-02	1.84E-04
3.0	5.42E-01	6.11E-01	3.28E-04	4.83E-02	1.67E-04
3.2	5.16E-01	5.80E-01	2.97E-04	1.58E-02	2.87E-04
3.4	4.89E-01	5.53E-01	2.67E-04	4.32E-02	2.30E-04

Table S3 Cole-Cole parameters of 1 under 1000 Oe dc field

Table S4 Cole-Cole parameters of 2 under 1000 Oe dc field

T/K	$\chi_{\rm S}$ / cm ⁻³ mol ⁻¹	$\chi_{\rm T}$ / cm ⁻³ mol ⁻¹	τ / s	α	R
2.0	1.62E-01	1.00E+00	2.30E-03	1.01E-01	1.72E-03
2.5	1.35E-01	8.04E-01	1.22E-03	9.52E-02	1.43E-03
3.0	1.23E-01	6.73E-01	6.53E-04	7.49E-02	9.43E-04
3.5	1.22E-01	5.80E-01	3.46E-04	4.23E-02	3.99E-04
4.0	1.37E-01	5.10E-01	1.90E-04	2.65E-15	4.16E-04
4.5	1.54E-01	4.59E-01	1.06E-04	6.03E-15	3.53E-04
5.0	2.05E-01	4.13E-01	7.32E-05	6.12E-15	3.45E-04

Fig. S8 Field dependence of the magnetization at 2 K for 1 (a) and 2 (b).

Table S5 M	lagnetic	parameters of 1	l and 2 com	pared with the	t of other high-
	<u> </u>			1	0

Compound	Dimension	SOC	ZFS	H _{dc}	U _{eff}	$\tau_0(s)$	Ref.
L. L. C. C.		parameters	parameters	(Oe)	(K)	• (•)	
[Co(1,4-bimb) _{0.5} (5-aip)(H ₂ O)] _n	2D	$\alpha = 1.20, \lambda =$ -160 cm ⁻¹ , $\Delta =$ -119 cm ⁻¹ , g = 2.17, zJ = -0.085 cm ⁻¹		1000	4.9	6.44×10 ⁻⁵	This work
[Co(1,4-bib)1.5(5-hip)(H2O)]n	3D	$\alpha = 1.26, \lambda =$ -160 cm ⁻¹ , $\Delta =$ -56.5 cm ⁻¹ , g = 2.12	D = -102 $cm^{-1}, E =$ $0.36 cm^{-1},$ $g_{xy} = 1.92,$ $g_z = 2.20$	1000	18.4	1.83×10 ⁻⁶	This work
[Co(btm)2(SCN)2·H2O]n	1D		D = 56.6 $cm^{-1}, E =$ $3.70 cm^{-1},$ g = 2.49	1500	45.4	5.6×10 ⁻⁸	1
[Co(tdmmb)(bpe)][BF4]2 ·3CH3CN	1D		D = 21.7(7) cm $^{-1}, E = -$ 0.4(3) cm ⁻ $^{1}, g =$ 2.121(1)	1000	19.0	7.5×10 ⁻⁶	2
[Co ^{II} L _{N302})]6[Co ^{III} (CN)6]4 ·26H2O	1D		D = 21.4(6) cm ⁻¹ , E=- 0.08(1) cm ⁻¹ , g _z = 2.121(1), g _{xy} = 2.328(5)	1500	9.1	1.9×10 ⁻⁶	3
[Co(bpg)2(SCN)2]·2DMF	2D		D = 67.5(2) $cm^{-1}, E = -2.32(3)$ $cm^{-1}, g_{xy} = 2.48(1), g_z$ = 2.26(3)	1500	15.3	9.7×10 ⁻⁶	4
[Co(ppad) ₂] _n	2D	$\alpha =$ 1.48(1), $\lambda =$	D = 76 cm ⁻¹ , E =	2000	16.4	5.03×10 ⁻⁶	5

dimensional $\operatorname{Co}(\operatorname{II})$ coordination polymers with SIM behavior

		-147(1) cm ⁻¹ ,	6.5cm ⁻¹ , g				
		⊿ = −482(5)	= 2.46				
		cm^{-1}					
			<i>D</i> = 62.6				
			$cm^{-1}, E =$				
$\{[Co(bmzbc)_2] \cdot 2DMF\}_n$			13.4 cm ⁻¹ ,		11.8	1.3×10 ⁻⁵	
	2D		$g_x = 2.055$.	2000			6
			$g_{\rm x} = 2.362$				
			$\sigma_{7} = 2.849$				
[Co(azbbny)(4.4)]		a = 1.26(1)	gz - 2.049				
-binvlos(DMF)(NCS)ol.		= -153(1)				1.2×10^{-6}	
MaOH	2D	cm^{-1} 4 -		1000	14	1.2~10	7
Meon		$-350(2) \text{ cm}^{-1}$					
		-330(2) cm					
[Co(azbbpy)(bpe) _{0.5} (DMF)		$\alpha = 1.20(1), \lambda$				1.7.10-6	
(NCS)2]·0.25H2O	2D	=-162(1)		1000	8.4	1./×10 °	7
		$cm^{-1}, \Delta =$					
		$-630(5) \text{ cm}^{-1}$					
		$\alpha = 1.18(1), \lambda$					
$[Co(dca)_2(atz)_2]_n$		=-125(1)				1.7×10 ⁻⁶	
	2D	$\mathrm{cm}^{-1}, \varDelta =$		1000	7.3		8
		-509(10)					
		cm ⁻¹					
			D = 70.1				
{[Co(3,3'-Hbpt) ₂ (SCN) ₂]			$cm^{-1}, E =$			7 2×10 ⁻⁷	
$\cdot 2H_2O_n$	2D		0.7 cm^{-1} ,	1500	32.5	7.2~10	9
			$g_{xy} = 2.61$,				
			$g_z = 2.64$				
{[(Co(NCS) ₂) ₃ (TPT) ₄]·aH ₂ O						0.00.10-6	
·bMeOH}n	3D			600	7.0	8.68×10 °	10
[Co(bmzbc) ₂ (1,2-etdio)] _n						1.2×10 ⁻⁷	
	3D			2000	16.8		11
			<i>D</i> = -86.91				·
[Co(NCS)2(L)]·2H2O·CH3OH			$cm^{-1}, E =$				
			15.42	800 7.05	1.09×10 ⁻⁵		
	3D		cm^{-1} , $g_{xy} =$		7.05)5	12
			2.511. g ₇ =				
			2 181				
			2.101				

References

1 Y. Y. Zhu, M. S. Zhu, T. T. Yin, Y. S. Meng, Z. Q. Wu, Y. Q. Zhang and S. Gao, *Inorg. Chem.*, 2015, **54**, 3716.

2 D. Shao, L. Shi, S.-L. Zhang, X.-H. Zhao, D.-Q. Wu, X.-Q. Wei and X.-Y. Wang, *CrystEngComm*, 2016, **18**, 4150.

3 D. Shao, L. Shi, F.-X. Shen and X.-Y. Wang, CrystEngComm, 2017, 19, 5707.

4 L. Shi, D. Shao, H.-Y. Wei and X.-Y. Wang, Cryst. Growth Des., 2018, 18, 5270.

5 X. Liu, L. Sun, H. Zhou, P. Cen, X. Jin, G. Xie, S. Chen and Q. Hu, *Inorg. Chem.*, 2015, **54**, 8884.

6 Y. L. Wang, L. Chen, C. M. Liu, Y. Q. Zhang, S. G. Yin and Q. Y. Liu, *Inorg. Chem.*, 2015, **54**, 11362.

7 A. E. Ion, S. Nica, A. M. Madalan, S. Shova, J. Vallejo, M. Julve, F. Lloret and M. Andruh, *Inorg. Chem.*, 2015, **54**, 16.

8 J. Palion-Gazda, T. Klemens, B. Machura, J. Vallejo, F. Lloret and M. Julve, *Dalton Trans.*, 2015, **44**, 2989.

9 L. Sun, S. Zhang, S. Chen, B. Yin, Y. Sun, Z. Wang, Z. Ouyang, J. Ren, W. Wang, Q.
Wei, G. Xie and S. Gao, *J. Mater. Chem. C*, 2016, 4, 7798.

10 G. Brunet, D. A. Safin, J. Jover, E. Ruiz and M. Murugesu, *J. Mater. Chem. C*, 2017, **5**, 835.

11 Y. L. Wang, L. Chen, C. M. Liu, Z. Y. Du, L. L. Chen and Q. Y. Liu, *Dalton Trans.*, 2016, **45**, 7768.

12 P. Hu, L. Yin, A. Kirchon, J. Li, B. Li, Z. Wang, Z. Ouyang, T. Zhang and H. C. Zhou, *Inorg. Chem.*, 2018, **57**, 7006.