Supporting Information

Trivalent Copper Stabilised by Acetylacetone Dithiocarbazate Schiff Base Ligands: structural, spectroscopic and electrochemical properties.

Jessica K. Bilyj, Nicole V. Silajew, Graeme R. Hanson, Jeffrey R. Harmer and Paul V. Bernhardt

Figure S1. Reactlab Kinetics calculated spectra of a) [Cu^{II}(Hacacsme)] formation (anaerobic) b) [Cu^{II}(Hacacsbn)] formation (anaerobic) c) the oxidation of [Cu^{II}(Hacacsme)] to give [Cu^{II}(acacsmeO)] and [(Cu^{III}(acacsme))₂] and d) oxidation of [Cu^{II}(Hacacsbn)] to give [Cu^{II}(acacsbnO)] and [(Cu^{III}(acacsbn))₂].

Figure S2. Cyclic voltammograms of H_3 acacsme (red) and H_3 acacsbz (green) in DMF with 0.1 M Et₄NClO₄ at 200 mV/s sweep rate.

Figure S3. Cyclic voltammetry of crystalline [Cu^{III}(acasme)] (2.7 mM in DMF and 0.1 M Et₄NClO₄) at a sweep rate of 500 mV/s.

Figure S4. Cyclic voltammetry of crystalline $[(Cu^{III}(acasbn))_2]$ (in DMF and 0.1 M Et₄NClO₄) at a sweep rate of 500 mV/s. Working electrode glassy carbon.

Figure S5. UV-Vis spectra of [Cu^{III}(acacsme)] (black) as prepared (partially reduced by the DMF solvent) (0.136 mM in DMF); [Cu^{III}(acacsme)] reduced with cobaltocene to its monoanion [Cu^{III}(acacsme)] (green); [Cu^{III}(acacsme)] oxidised with FeCl₃ (blue). Cobaltocene and FeCl₃ have negligible absorbance in these regions.

Figure S6 CVs of the dimeric complexes a) [(Cu(acacsme)₂)] and b) [(Cu(acacsbn)₂)] formed *in situ* from aerial oxidation of their [Cu(HacacsR)] precursors in the presence of excess Et_3N . Scan rate 200 mV s⁻¹ DMF and 0.1 M Et_4NCIO_4 .

Figure S7. Experimental (top) and simulated (bottom) X-band CW EPR spectra of $[Cu^{II}(acacsme)]^{-1}$ (1.36 mM in DMF, v = 9.430 GHz, 140 K). Spin Hamiltonian parameters: $g_x 2.0261 (A_{x,Cu} 36.6 \times 10^{-4}, A_{x,N} 15.7 \times 10^{-4} \text{ cm}^{-1})$; $g_y 2.0266 (A_{y,Cu} 36.6 \times 10^{-4}, A_{y,N} 16.2 \times 10^{-4} \text{ cm}^{-1})$; $g_z 2.1072 (A_{z,Cu} 188.5 \times 10^{-4}, A_{z,N} 14.2 \times 10^{-4} \text{ cm}^{-1})$.

Figure S8. Experimental (top) and simulated (bottom) X-band CW EPR spectra of crystalline [Cu^{II}(acacsmeO)] (0.65 mM in DMF, v =9.432 GHz, 140 K). Spin Hamiltonian parameters: g_x 2.0254 ($A_{x,Cu}$ 37.0 × 10⁻⁴, $A_{x,N}$ 17.7 × 10⁻⁴ cm⁻¹); g_y 2.0279 ($A_{y,Cu}$ 36.5 × 10⁻⁴, $A_{y,N}$ 14.6 × 10⁻⁴ cm⁻¹); g_z 2.1250 ($A_{z,Cu}$ 180.0 × 10⁻⁴, $A_{z,N}$ 18.5 × 10⁻⁴ cm⁻¹).

Figure S9. X-band CW EPR spectra (v = 9.3742 GHz) of frozen DMF solutions (130 K) of a) [Cu^{II}(acacsbnO)] and minor amounts of reduced dimer (*) produced aerobically without added base b) the same solution prepared aerobically with added Et₃N c) crystalline dimer [(Cu(acacsbn))₂].