A series of new hybrid chalcogenogermanates: the rare examples of chalcogenogermanates combined with trivalent vanadium complexes

Hai-Ying Luo, Jian Zhou and Shumei Cao

Fig. S1 The formation of 2-D layers constructed from N-H \cdots S H-bonds in 1 (a) and 2 (b).

Fig. S2 3-D H-bonding network structure in **5**. All H bonded to C atoms are omitted for clarity.

Fig. S3 Photocurrent density versus time of 1-3 at 0.6 V potential.

Fig. S5 Simulated, experimental powder XRD patterns of polycrystalline samples of

1-6.

Table S1 Hydrogen bonds for 1 [Å and deg].

D-Н…А	d(D-H)	$d(\mathrm{H}{\cdots}\mathrm{A})$	$d(D \cdots A)$	<(DHA)
N(1)-H(1A)····S(3)#1	0.90	2.64	3.542(3)	175.2
N(1)-H(1B)···S(3)	0.90	2.60	3.474(3)	163.0
N(2)-H(2A)···S(2)#2	0.90	2.87	3.658(3)	147.4
N(2)-H(2B)····S(2)#3	0.90	2.61	3.437(3)	153.4

N(3)-H(3A)····S(3)#1	0.90	2.85	3.733(4)	165.6
N(3)-H(3B)···S(3)#3	0.90	2.75	3.557(3)	149.2

Symmetry transformations used to generate equivalent atoms: (#1) -x+2,-y,-z+2; (#2) x,-y+1/2,z+1/2; (#3) x,y,z+1.

D-Н…А	d(D-H)	$d(H^{\dots}A)$	$d(D \cdots A)$	<(DHA)
N(4)-H(4AA)S(2)#1	0.90	2.69	3.355(3)	132.0
N(4)-H(4AB)…S(3)#1	0.90	2.61	3.497(3)	167.4
N(4)-H(4AB)…S(3)#1	0.90	2.61	3.497(3)	167.4
N(4)-H(4AA)…S(2)#1	0.90	2.69	3.355(3)	132.0
N(3)-H(3BC)…S(3)#3	0.90	2.65	3.514(3)	160.6
N(3)-H(3BD)…S(3)#2	0.90	2.70	3.561(3)	159.8
N(3)-H(3BC)…S(3)#3	0.90	2.65	3.514(3)	160.6
N(3)-H(3BD)…S(3)#2	0.90	2.70	3.561(3)	159.8
N(1)-H(1BD)S(2)	0.90	2.91	3.797(4)	167.1
N(1)-H(1BD)S(2)	0.90	2.91	3.797(4)	167.1

Table S2 Hydrogen bonds for 2 [Å and deg].

Symmetry transformations used to generate equivalent atoms: (#1) -x+1,-y+1,-z-1; (#2) -x,-y+1,-z+1; (#3) x,y,z+1.

Table S3 Hydrogen bonds for **3** [Å and deg].

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
N(2)-H(2A)····S(1)#1	0.90	2.78	3.646(5)	161.7
N(1)-H(1A)···S(2)#2	0.89	2.35	3.234(4)	174.4
N(1)-H(1C)···S(2)#3	0.89	2.72	3.578(4)	163.1
N(1)-H(1B)····S(1)#3	0.89	2.88	3.379(4)	116.9

Symmetry transformations used to generate equivalent atoms: (#1) x,y,z+1; (#2) - x+1/2,y-1/2,-z+3; (#3) -x+1,-y,z+1.

D-H…A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
$N(1)-H(1A)\cdots Se(1)#2$	0.90	2.91	3.674(7)	144.3
N(1)-H(1B)Se(3)	0.90	3.05	3.802(7)	142.6
N(2)-H(2A)Se(3)#2	0.90	2.77	3.634(7)	161.6
N(3)-H(3A)Se(1)#3	0.90	2.72	3.569(7)	157.5
N(3)-H(3B)Se(3)	0.90	2.89	3.720(7)	153.8
N(4)-H(4A)Se(3)#3	0.90	3.06	3.863(7)	150.1
N(4)-H(4B)…O(1)#4	0.90	1.94	2.836(9)	177.0
N(5)-H(5A)Se(1)#1	0.90	2.60	3.438(7)	154.7
N(5)-H(5B)Se(3)	0.90	2.60	3.485(7)	168.6

Table S4 Hydrogen bonds for 4 [Å and deg].

Symmetry transformations used to generate equivalent atoms: (#1) -x,-y,-z+2; (#2) x-1/2,-y+1/2,z+1/2; (#3) x+1/2,-y+1/2,z+1/2; (#4) -x,-y,-z+3.

Table S5 Hydrogen bonds for **5** [Å and deg].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)Se(3)	0.90	2.81	3.628(6)	151.0
N(1)-H(1B)Se(1)#1	0.90	2.62	3.460(6)	155.1
N(2)-H(2A)Se(1)#2	0.90	2.88	3.569(6)	134.7
N(2)-H(2B)Se(3)#3	0.90	2.85	3.653(6)	149.5
N(3)-H(3C)Se(1)#4	0.91	2.60	3.452(6)	156.4
N(4)-H(4C)Se(3)	0.91	2.64	3.511(6)	159.5
N(5)-H(5A)O(1)#5	0.90	2.06	2.942(7)	167.1
N(5)-H(5B)Se(1)#1	0.90	2.82	3.605(6)	147.2

Symmetry transformations used to generate equivalent atoms: (#1) -x+1,-y+1,-z+2; (#2) x,y,z-1; (#3) x-1/2,-y+3/2,z-1/2; (#4) x+1/2,-y+3/2,z-1/2; (#5) -x+1,-y+1,-z+1.

	Table S6 Hydrogen	bonds for 6 [Å	and deg].	
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

N(1)-H(1A)Se(3)#3	0.90	2.79	3.666(3)	164.7
N(1)-H(1B)Se(1)#4	0.90	2.84	3.623(3)	145.7
N(2)-H(2A)Se(1)#5	0.90	2.88	3.647(3)	143.8
N(2)-H(2B)Se(3)	0.90	2.88	3.590(3)	136.7
N(3)-H(3B)Se(1)	0.90	2.92	3.790(3)	163.1
N(4)-H(4A)Se(1)#5	0.90	2.86	3.752(3)	169.2
N(4)-H(4B)N(6)#2	0.90	2.21	3.020(5)	148.9
N(5)-H(5A)Se(3)#3	0.90	2.66	3.363(3)	135.4
N(5)-H(5A)N(6)	0.90	2.43	2.893(4)	112.4
N(5)-H(5B)Se(3)	0.90	2.63	3.517(3)	169.0
N(6)-H(6D)Se(2)#6	0.886(10)	2.83(2)	3.607(3)	147(4)
N(6)-H(6C)Se(3)#3	0.891(10)	2.80(2)	3.651(4)	160(4)

Symmetry transformations used to generate equivalent atoms: (#1) -x+1,-y+1,-z+2; (#2) -x+1,-y+2,-z+1; (#3) -x+1,-y+2,-z+2; (#4) x,y+1,z; (#5) -x,-y+1,-z+1; (#6) x+1,y+1,z.