Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting material

Size-dependent spin switching in robust Fe-triazole@SiO2 spin-crossover nanoparticles with ultrathin shell

R. Torres-Cavanillas, L. Lima-Moya, F. D. Tichelaar, H.W. Zandbergen, M. Giménez-Marqués, E. Coronado

Table of contents:

Dynamic Light scattering (DLS) measurements

Chemical stability in water

X-ray Powder diffraction (XRPD) analysis

Thermogravimetric Analyses

Table S1. Elemental analyses.

High-Resolution Transmission Electronic Microscopy (TEM)

Dynamic Light scattering (DLS) measurements

Figure S1. Number-based particle size distribution for the stable aqueous suspensions of NPs 1-4 obtained by DLS analysis.

Chemical stability in water

Figure S2. Images of a stable pink suspension of [Fe(Htrz)₂(trz)](BF₄)@SiO₂ NPs **2** in EtOH after 3 days (left) and the same suspension containing [Fe(Htrz)₂(trz)](BF₄) NPs coated with dioctyl sulfosuccinate (right) which turned yellow due to chemical degradation.

Figure S3. X-ray diffraction patterns of powdered samples 1 – 4 and simulated pattern.

Thermogravimetric Analyses.

Figure S4. Thermogravimetric analysis of samples 1 – 4.

Table S1. Chemical composition of samples 1-4 as deduced from Elemental Analyses and ICP.

Sample		% N	% C	% H	Molecular formulae
1	theoretical	32.1	18.4	2.1	[Fe(Htrz) ₂ (trz)](BF ₄)@(SiO ₂) _{0.7}
	experimental	29.1	17.2	2.2	
2	theoretical	31.6	18.1	2.0	[Fe(Htrz) ₂ (trz)](BF ₄)@(SiO ₂) _{0.8}
	experimental	32.7	18.5	2.6	
3	theoretical	31.6	18.1	2.0	[Fe(Htrz) ₂ (trz)](BF ₄)@(SiO ₂) _{0.8}
	experimental	31.8	18.7	2.7	
4	theoretical	30.4	17.4	2.0	[Fe(Htrz) ₂ (trz)](BF ₄)@(SiO ₂) _{1.1}
	experimental	31.0	18.3	2.6	

Figure S5. Number-based particle size distribution for the suspension of NPs **1-4** drop casted on a TEM grid and manually counted (table 1).

Figure S6. STEM elemental mapping of NPs **1** (top), **2** (middle) and **4** (down) displaying sizes of 50 nm and 25 nm, respectively. Green points represent iron, and purple silicium. Note that C and Si contamination was observed during mapping, which, accompanied by a continuous motion of the atoms upon beam exposure, hinders a practical shell thickness interpretation.