Supporting Information

Using Boryl-substitution and Improved Suzuki-Miyaura Crosscoupling to Access New Phosphorescent Tellurophenes

Christina A. Braun,^a Nicole Martinek,^a Yuqiao Zhou,^a Michael J. Ferguson^a and Eric Rivard^a

^aDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2

Table of Contents

1.	X-ray structure determinations	S2
2.	Ultraviolet-visible (UV-vis) spectroscopy measurements	S4
3.	Luminescence Images	S5
4.	Lifetime measurements	S6
5.	NMR Spectra	S7
6. B(C	Time dependent density functional theory (TD-DFT) computations for Mes(ⁱ PrO)B-Te-6 D ⁱ Pr)Mes	5- S19
7.	References	S23

1. X-ray structure determinations

X-ray Crystallography. Crystals suitable for X-ray diffraction studies were removed from a vial and immediately coated in a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then mounted on a glass fiber, and quickly placed in a low temperature stream of nitrogen on an X-ray diffractometer. All data was collected on a Bruker APEX II CCD detector/D8 diffractometer¹ using Cu K α radiation with the crystals cooled to –100 °C. The data was corrected for absorption using Gaussian integration from the indexing of the crystal faces.² Crystal structures were solved using intrinsic phasing SHELXT-2014³ and refined using full-matrix least-squares on F^2 (SHELXL).⁴ The assignment of hydrogen atom positions were based on the sp² or sp³ hybridization geometries of their respective carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms.

Special refinement conditions for danB-Te-6-Bdan: In the structure of **danB-Te-6-Bdan**, the C11S-C12S distance (carbons of an Et₂O solvent molecule) was constrained by *DFIX* command in *SHELXL* to be 1.4437(11) Å.

Compound	catB-Te-6-Bcat	(^t Bucat)B-Te-6- B(^t Bucat)	danB-Te-6-Bdan	Mes(ⁱ PrO)B-Te-6- B(O ⁱ Pr)Mes
formula	$C_{20}H_{16}B_2O_4Te$	$C_{28}H_{32}B_2O_4Te$	$C_{40}H_{54}B_2N_4O_3Te$	$C_{32}H_{44}B_2O_2Te$
form. wt. (g/mol)	469.55	581.75	788.09	609.89
crys. dimes. (mm)	$0.45 \times 0.04 \times 0.04$	0.29×0.16×0.14	0.23×0.23×0.14	0.12×0.09×0.06
Crystal system	Orthorhombic	Triclinic	Monoclinic	Orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 1 (No. 2)	P21/c (No. 14)	Pnn2 (No. 34)
<i>a</i> (Å)	5.07070(10)	12.0209(3)	15.677(6)	10.0095(3)
<i>b</i> (Å)	17.1292(3)	12.9608(3)	13.588(3)	12.3649(4)
<i>c</i> (Å)	20.6984(4)	18.3885(4)	18.6150(19)	12.5793(4)
α (deg)	-	86.3327(10)	-	-
β (deg)	-	77.7639(9)	91.140(15)	-
γ (deg)	-	69.4855(11)	-	-
$V(Å^3)$	1797.80(6)	2622.13(11)	3964.8(18)	1556.90(8)
Ζ	4	4	4	2
$\rho_{calcd} (g \text{ cm}^{-3})$	1.735	1.474	1.320	1.301
μ (mm ⁻¹)	13.26	6.204	6.237	7.720
temperature (°C)	-100	-100	-100	-100
$2\theta_{\rm max}$ (deg)	148.13	148.26	149.08	148.15
total data	12381	64505	172797	10692
unique data (R _{int})	3595 (0.0252)	10160 (0.0392)	8062 (0.0391)	3126 (0.0180)
Obs $[I > 2\sigma(I)]$	3579	9170	7701	3037
Parameters	246	643	493	171
$R_1 [F_o^2 \ge 2\sigma (F_o^2)]^a$	0.0203	0.0220	0.0207	0.0158
wR_2 [all data] ^a	0.0490	0.0597	0.0559	0.0399
max/min Δr (e Å ⁻³)	1.018/-0.717	0.572/-0.433	0.789/-0.462	0.220/-0.262

Table S1. Crystallographic data for tellurophenes derived from (ⁱPrO)₂B-Te-6-B(OⁱPr)₂.

 $a_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}$

2. Ultraviolet-visible (UV-vis) spectroscopy measurements

Figure S1. UV-vis absorption spectra recorded in THF, $[conc] = 3x \ 10^{-5} M$.

3. Luminescence Images

Figure S2. Top: Solutions of a) catB-Te-6-Bcat, b) ^tBucatB-Te-6-B^tBucat, c) danB-Te-6-Bdan and d) Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes in 2-methyltetrahydrofuran (0.01 - 0.02 M) at room temperature. Bottom: 2-Methyltetrahydrofuran solutions of e) catB-Te-6-Bcat, f) ^tBucatB-Te-6-B^tBucat, g) danB-Te-6-Bdan and h) Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes cooled in an N₂(1) bath and irradiated with a handheld UV lamp (365 nm).

Figure S3. Top: Solid state samples of a) catB-Te-6-Bcat, b) ^tBucatB-Te-6-B^tBucat, c) danB-Te-6-Bdan and d) Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes at room temperature. Bottom: Solid state samples of e) catB-Te-6-Bcat, f) ^tBucatB-Te-6-B^tBucat, g) danB-Te-6-Bdan and h) Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes cooled in an N_{2 (l)} bath and irradiated with a handheld UV lamp (365 nm).

4. Lifetime measurements

Lifetime measurements were collected on samples sealed in a melting point tube under an N₂ atmosphere. The decay curves were measured using a Horiba PTI QuantaMaster 8075 fluorescence spectrometer equipped with a 75W xenon flash lamp. The resulting decay curve was fitted with the lowest exponential function that gave a suitable reduced chi-square value $(\chi^2)^{13}$ and a suitable Durbin Watson parameter.¹⁴⁻¹⁶

Table S2. The photoluminescence decay of Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes powder fit with a biexponential, and the resulting parameters.

Number of components	2
Lifetime of component 1 (τ_1)	81. 9517 ± 0.641791 μs
Weight of component 1 (A_1)	0.79
Lifetime of component 2 (τ_2)	$160.609 \pm 0.378898 \ \mu s$
Weight of component 2 (A_2)	0.21
Weighted mean lifetime $\left(\frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}\right)$	108.893 µs
χ^2	1.01188
Durbin-Watson parameter	2.03129
Z (run test of the residuals)	-0.00895626

Table S3. The photoluminescence decay of ('Bucat)B-Te-6-B('Bucat) powder fit with a biexponential, and the resulting parameters.

Number of components	2
Lifetime of component 1 (τ_1)	$9.1034 \pm 0.302457 \ \mu s$
Weight of component 1 (A_1)	0.61
Lifetime of component 2 (τ_2)	$27.9130 \pm 0.172553 \ \mu s$
Weight of component 2 (A_2)	0.39
Weighted mean lifetime $\left(\frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}\right)$	21.5352 μs
χ^2	1.03149
Durbin-Watson parameter	1.86808
Ζ	-0.0397772

5. NMR Spectra

Figure S4. ¹H NMR spectrum of 1,8-bis(diisopropyl-1,3,2-dioxaborolan-2-yl)octa-1,7-diyne in C_6D_6 .

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of 1,8-bis(diisopropyl-1,3,2-dioxaborolan-2-yl)octa-1,7-diyne in C₆D₆.

Figure S6. ¹¹B{¹H} NMR spectrum of 1,8-bis(diisopropyl-1,3,2-dioxaborolan-2-yl)octa-1,7-diyne in C₆D₆.

Figure S7. ¹H NMR spectrum of (ⁱPrO)₂B-Te-6-B(OⁱPr)₂ in C₆D₆.

Figure S8. ¹³C{¹H} NMR spectrum of (ⁱPrO)₂B-Te-6-B(OⁱPr)₂ in C₆D₆.

Figure S9. ¹¹B{¹H} NMR spectrum of $({}^{i}PrO)_{2}B$ -Te-6-B $(O^{i}Pr)_{2}$ in C₆D₆.

Figure S10. ¹H NMR spectrum of catB-Te-6-Bcat in C₆D₆.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of catB-Te-6-Bcat in C₆D₆.

Figure S12. ¹¹B $\{^{1}H\}$ NMR spectrum of catB-Te-6-Bcat in C₆D₆.

Figure S13. ¹H NMR spectrum of ^tBucatB-Te-6-B^tBucat in C₆D₆.

Figure S14. ¹³C{¹H} NMR spectrum of ^tBucatB-Te-6-B^tBucat in C₆D₆.

Figure S15. ¹¹B $\{^{1}H\}$ NMR spectrum of ^tBucatB-Te-6-B^tBucat in C₆D₆.

Figure S16. ¹H NMR spectrum of danB-Te-6-Bdan in C₆D₆.

Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum of danB-Te-6-Bdan in C₆D₆.

Figure S18. ${}^{11}B{}^{1H}$ NMR spectrum of danB-Te-6-Bdan in C₆D₆.

Figure S19. ¹H NMR spectrum of Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes in C₆D₆.

Figure S20. ¹³C{¹H} NMR spectrum of Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes in C₆D₆.

Figure S21. ¹¹B $\{^{1}H\}$ NMR spectrum of Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes in C₆D₆.

Figure S22. ¹H NMR spectrum (CDCl₃) of the attempted Suzuki-Miyaura cross coupling reactions between borylated tellurophenes and 2 equiv. of 2-bromothiophene. a) coupling with **pinB-Te-6-B-pin** (16 hrs), b) coupling with **catB-Te-6-Bcat** (40 hrs), c) coupling with **'BucatB-Te-6-B'Bucat** (40 hrs), d) **danB-Te-6-Bdan** (16 hrs). All reactions were worked up by diluting with *ca*. 3 mL of CH₂Cl₂, drying over MgSO₄ and filtering before removing all volatiles. In the above spectra T = thienyl group.

Figure S23. ¹³C{¹H} NMR spectrum (CDCl₃) of attempted Suzuki-Miyaura cross coupling reactions between borylated tellurophenes and 2-bromothiophene to produce **thienyl-Te-6-thienyl** (**T-Te-6-T**). a) coupling with **pinB-Te-6-B-pin** (16 hrs), b) coupling with **catB-Te-6-Bcat** (40 hrs), c) coupling with ^t**BucatB-Te-6-B'Bucat** (40 hrs), d) **danB-Te-6-Bdan** (16 hrs). All reactions were worked up by diluting with *ca*. 3 mL of CH₂Cl₂, drying over MgSO₄ and filtering before removing all volatiles. In the above spectra **T** = thienyl group.

Figure S24. ¹H NMR spectrum of **thienyl-Te-6-thienyl** (**T-Te-6-T**) in CDCl₃ produced via the Suzuki-Miyaura cross coupling of **pinB-Te-6-Bpin** and 2 equiv. 2-bromothiophene.

Figure S25. ¹H NMR spectrum of **thienyl-Te-6-thienyl** (**T-Te-6-T**) in CDCl₃ produced via the Suzuki-Miyaura cross coupling of **danB-Te-6-Bdan** and 2 equiv. 2-bromothiophene.

6. Time dependent density functional theory (TD-DFT) computations for Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes

All computations have been carried out with the Gaussian16 software package.⁵ Geometry optimizations of the gas-phase structures have been performed using density functional theory (DFT) with the hybrid density functional (B3LYP)^{6,7} in combination with the basis set cc-pVDZ (for C, H, B, O, N)⁸ as well as the basis set cc-pVDZ(-PP) for Te.⁹ The cc-PVDZ-PP basis set uses the corresponding effective core potential (ECP) accounting for 28 electrons. The use of the cc-PVDZ and cc-PVDZ-PP basis sets will hereafter be referred to as cc-PVDZ(-PP). The basis sets as well as the ECP for the Te atom were obtained from the Basis Set Exchange Library.^{10,11} Initial molecular geometries were taken from the experimentally obtained X-ray structures. Subsequent frequency analysis confirmed all obtained structures to be local minima on the potential energy surface. The optimized geometry of the S_0 ground state was determined at the B3LYP level of theory. The phosphorescence energy was calculated by computing the optimized geometry of the lowest lying triplet state (T₁) using UB3LYP (spin-unrestricted B3LYP) with the same basis sets as specified above. Subsequent TD-DFT calculations were used to predict the vertical excitation energies of the first 10 singlet and first ten triplet sates using the B3LYP functional as well as the cc-PVDZ(-PP) basis sets starting from the B3LYP optimized gas-phase S₀ geometry. The presented molecule orbitals (MOs) were extracted from the Gaussian16 checkpoint-files and are visualized with VMD.¹²

Excited State	Energy (eV) Oscillator Strength	Wavelength (nm)	Transition
Т1	2.4463	506.9	142 - 144
11	0.0000	300.8	HOMO-1 to LUMO
ТЭ	2.4934	407.2	143 - 144
12	0.0000	497.5	HOMO to LUMO
S1	3.4273	261.8	143 - 144
51	0.0577	501.0	HOMO to LUMO
ТЗ	3.5688	3171	140 - 146
15	0.0000	347.4	HOMO-3 to LUMO+2
Τ/	3.5691	3171	141 - 146
14	0.0000	5777	HOMO-2 to LUMO+2
Т5	3.8094	325 5	141 - 144
15	0.0000	525.5	HOMO-2 to LUMO
Тб	3.8548	321.6	140 - 144
10	0.0000	521.0	HOMO-3 to LUMO
\$2	3.8633	320.9	141 - 144
52	0.0046	520.7	HOMO-2 to LUMO
\$3	3.8876	318.0	140 - 144
55	0.0001	510.7	HOMO-3 to LUMO
Т7	3.8956	318 3	143 - 145
1 /	0.0000	510.5	HOMO to LUMO+1
S 4	3.9338	315.2	142 - 144
54	0.3590	515.2	HOMO-1 to LUMO
Т8	4.0703	304.6	139 - 144
10	0.0000	501.0	HOMO-4 to LUMO
Т9	4.0723	304.5	138 - 144
17	0.0000		HOMO-5 to LUMO
\$5	4.0831	303 7	139 - 144
	0.0021	505.1	HOMO-4 to LUMO
S 6	4.0847	303.5	138 - 144
50	0.0001	505.5	HOMO-5 to LUMO
S7	4.2622	290.9	143 - 145
57	0.0000	270.7	HOMO to LUMO+1
Т10	4.4234	280.3	138 - 146
110	0.0000	200.5	HOMO-5 to LUMO+2
S8	4.7159	262.9	143 - 146
50	0.0030		HOMO to LUMO+2
S 9	4.7350	261.9	137 - 144
	0.0000		HOMO-6 to LUMO
S10	4.7407	261.5	142 - 145
510	0.0014	201.3	HOMO-1 to LUMO+1

Table S4. TD-DFT calculated excited states of **Mes(ⁱPrO)B-Te-6-B(OⁱPr)Mes** at the B3LYP/ccpVDZ(-PP) level of theory.

A +		Coordinates	
Atom	Х	Y	Ζ
Te	0.403955945	0.230358186	1.22239863
Ο	1.010759912	4.31293258	-0.324681636
С	0.529998639	1.867729981	-0.074677582
С	0.420632011	1.444619295	-1.396749948
С	0.499526979	2.436957755	-2.550324858
Н	1.557191849	2.735907035	-2.674747283
Н	-0.026601767	3.361211619	-2.277791663
С	-0.021314303	1.88598964	-3.880947155
Н	-1.124260662	1.807856386	-3.852624245
Н	0.22468247	2.59158818	-4.691760423
С	1.283045405	5.67920875	0.046763567
Н	1.354430814	5.742708715	1.145712911
С	0.13117618	6.554823203	-0.438264913
Н	0.320699677	7.611252187	-0.188342742
Н	0.016172208	6.471972769	-1.531409094
Н	-0.818257833	6.258430898	0.032745539
С	2.615123346	6.076679455	-0.58243871
Н	2.87160029	7.115335586	-0.318486723
Н	3.426685766	5.420656453	-0.233004804
Н	2.560954135	5.999898112	-1.680610975
С	0.722296228	3.493390133	2.122142215
С	-0.512394158	3.712094323	2.788117876
С	-0.536733147	3.880559386	4.176350956
Н	-1.497633243	4.047763785	4.673313627
С	0.633253912	3.831976874	4.948022591
С	1.84379949	3.610460657	4.286811458
Н	2.769444505	3.561832002	4.868715939
С	1.90600121	3.445954179	2.893928591
С	-1.811774032	3.748083587	2.011531418
Н	-2.664624771	3.979166748	2.66687037
Н	-2.012182709	2.779725812	1.523495932
Н	-1.79056011	4.505660205	1.210733786
С	0.573253754	4.003200042	6.447255392
Н	0.093806599	4.957465489	6.723492638
Н	1.577325155	3.987669556	6.896776545
Н	-0.018201251	3.199569095	6.918463621

Table S5. Coordinates for the optimized structure of $Mes(^{i}PrO)B$ -Te-6-B($O^{i}Pr$)Mes in the ground state (S₀).

С	3.256283034	3.242607023	2.238499104
Η	3.987384149	2.826437455	2.948386642
Η	3.669827216	4.198274796	1.870443524
Η	3.198620929	2.559937111	1.3765864
В	0.762562857	3.28128154	0.543037014
0	-0.310768407	-3.03775271	-1.647741152
С	0.202539443	-0.838175614	-0.565602144
С	0.253023512	0.029315383	-1.653613992
С	0.111095034	-0.487315972	-3.08002328
Η	-0.953829179	-0.731479774	-3.252728368
Η	0.64143957	-1.443385946	-3.180002688
С	0.573288576	0.506260303	-4.149873978
Η	1.676980337	0.578768091	-4.147687328
Η	0.283136648	0.133895949	-5.146347016
С	-0.577094538	-4.449003544	-1.775267512
Η	-0.597047605	-4.900657842	-0.769072673
С	0.54291266	-5.084158717	-2.594363229
Η	0.356211806	-6.161889876	-2.728753644
Η	0.606876645	-4.616115012	-3.590303994
Η	1.516077855	-4.96686308	-2.094047901
С	-1.940813694	-4.607681413	-2.441151515
Η	-2.193573342	-5.674391571	-2.552953275
Η	-2.72922313	-4.126391479	-1.842925507
Η	-1.937904599	-4.14404551	-3.441074156
С	0.10006184	-3.141697508	0.913942291
С	1.362876729	-3.57265429	1.399112633
С	1.451286287	-4.22465302	2.633310897
Η	2.433092875	-4.549636457	2.99205843
С	0.319518105	-4.464504247	3.425951585
С	-0.918930322	-4.032408239	2.945089103
Η	-1.815600634	-4.202448539	3.549129593
С	-1.045413001	-3.382780299	1.706929265
С	2.623765962	-3.318158834	0.600263324
Η	3.504571642	-3.760214914	1.089130106
Η	2.80932648	-2.237743606	0.480558342
Η	2.558157898	-3.740697655	-0.416007179
С	0.448766138	-5.158333649	4.761059105
Η	0.932396537	-6.144169592	4.656043561
Η	-0.532780708	-5.312793546	5.233476051
Η	1.068791962	-4.570323583	5.459264705

С	-2.42332159	-2.970936927	1.231585348
Η	-3.116427214	-2.841515231	2.07686689
Η	-2.862094015	-3.73620987	0.567039884
Η	-2.400488881	-2.025413325	0.667918405
В	-0.01289173	-2.381028409	-0.482055096

7. References

- 1. H. Hope, Prog. Inorg. Chem., 1994, 41, 1.
- 2. R. H. Blessing, Acta Crystallogr., 1995, A51, 33.
- 3. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3.
- 4. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 6. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 7. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 8. T. H. Dunning, Jr. J. Chem. Phys., 1989, 90, 1007.
- 9. K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J. Chem. Phys., 2003, 119, 11113.
- 10. D. Feller, J. Comput. Chem., 1996, 17, 1571.
- K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem. Inf. Model., 2004, 47, 1045.
- 12. VMD: W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph., 1996, 14, 33.
- 13. P. R. Bevington, IBM J. Res. Develop., 1969, 13, 119
- 14. J. Durbin and G. S. Watson, *Biometrika*, 1950, **37**, 409.
- 15. J. Durbin and G. S. Watson, *Biometrika*, 1951, **38**, 159.
- 16. D. V. O'Connor and D. Phillips, *Time Correlated Single Photon Counting*, Academic Press, New York, 1984.