Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Figure S1. XRD diffraction patterns of the as-prepared $MnO@Al_2O_3@C/Ni-500$ (a) and $MnO@Al_2O_3@C/Ni-900$ (b).

Figure S2. XPS Al 2p spectra of MnO@Al₂O₃@C/Ni-500 nanoflakes.

Figure S3. TGA curve of MnO₂@NiAl-LDH@PDA-Ni²⁺.

Figure S4. UV-vis absorption spectra of 4-NP (red line), 4-nitrophenolate (black line), and 4-AP (blue line).

Table S1. The ICP data of MnO@Al₂O₃@C/Ni with different calcination temperature before and after catalytic reaction.

Catalysts	Ni (µg.mg⁻¹)
MnO@Al ₂ O ₃ @C/Ni-500	342.47
MnO@Al ₂ O ₃ @C/Ni-700	631.59
MnO@Al ₂ O ₃ @C/Ni-900	633.44

Table S2. A full comparison of MnO@Al2O3@C/Ni nanoflakes catalysis activity and test

Catalyst	Туре	K(×10 ⁻³ s ⁻¹)	κ(×10 ⁻³ mg ⁻¹ s ⁻¹)	Reference
MnO@Al ₂ O ₃ @C/Ni-700	nanoflakes	5.37	13.7	This work
MnO@Al ₂ O ₃ @C/Ni-500	nanoflakes	4.81	7.61	This work
MnO@Al ₂ O ₃ @C/Ni-900	nanoflakes	1.55	2.44	This work
Ni/p (AMPS)	Hydrogel	0.9	0.15	1
Ni/MC-550	Nanotube	1.51	338	2
Ni/SiO ₂	Core-shell	2.8	0.94	3
RGO-Ni	Nanosheets	0.25	0.04	4
C-Ni/400	Core-shell	5.9	142	5
C-Ni/500	Core-shell	21.7	523	5
C-Ni/600	Core-shell	18.6	449	5
Ni/SNTs	Nanotube	9.9	31	6
Ni (modified)	Nanoparticles	2.4	0.80	7

condition with other nickel and noble metal catalysts.

Figure S5. The reusability of $MnO@Al_2O_3@C/Ni$ as the catalyst for the reduction of 4-NP with $NaBH_4$.

Table S3. Isotherm parameters for the adsorption of BHb protein on theMnO@Al₂O₃@C/Ni-700.

T(℃)	Langmuir	model		Freundich	model	
	K _d (mg/mL)	Q _m (mg/g)	R ²	K _F (mg/g)	n	R ²
700	0.039	1684.00	0.9866	831.94	1.6358	0.9738

Figure S6. The reusability of BHb protein on the MnO@Al₂O₃@C/Ni-700.

Adsorbent	Capacity (mg g ⁻¹)	Reference
MnO@Al ₂ O ₃ @C/Ni-700	1684.0	This work
CoFe ₂ O ₄ @Si-IDA-Cu ²⁺ NPs	1812.3	8
CNTs/Fe ₃ O ₄ @CuSilicate	302.3	9
Cu-IDA-silica-coated Fe ₃ O ₄	418.6	10
Fe ₃ O ₄ @PVBC@IDA-Ni MNPs	1988	11
Ni-MNPs	1054.3	12

Table S4. Properties of different adsorbents for BHb capture.

References

- 1. N. Sahiner, H. Ozay, O. Ozay and N. Aktas, *Applied Catalysis A General*, 2010, **385**, 201-207.
- 2. Y. Yang, Y. Ren, C. Sun and S. Hao, *Green Chemistry*, 2014, **16**, 2273-2280.
- 3. Z. Jiang, J. Xie, D. Jiang, J. Jing and H. Qin, *Life Sciences*, 2012, **14**, 4601-4611.
- 4. Z. Ji, X. Shen, G. Zhu, H. Zhou and A. Yuan, *Journal of Materials Chemistry*, 2012, **22**, 3471-3477.
- 5. L. Ding, M. Zhang, Y. Zhang, J. Yang, J. Zheng, T. Hayat, N. S. Alharbi and J. Xu, *Nanotechnology*, 2017, **28**, 345601.
- 6. S. Zhang, S. Gai, F. He, S. Ding, L. Li and P. Yang, *Nanoscale*, 2014, **6**, 11181-11188.

- 7. Z. Jiang, J. Xie, D. Jiang, X. Wei and M. Chen, *Crystengcomm*, 2012, **15**, 560-569.
- 8. Y. Wei, Y. Li, A. Tian, Y. Fan and X. Wang, *Journal of Materials Chemistry B*, 2013, **1**, 2066-2071.
- 9. M. Zhang, Y. Wang, Y. Zhang, L. Ding, J. Zheng and J. Xu, *Applied Surface Science*, 2016, **375**, 154-161.
- 10. M. Zhang, D. Cheng, X. H. Prof, L. Chen and Y. Z. Prof, *Chemistry An Asian Journal*, 2010, **5**, 1332-1340.
- 11. M. Zhang, B. Wang, Y. Zhang, W. Li, W. Gan and J. Xu, *Dalton Transactions*, 2016, **45**, 922.
- 12. Y. Wang, M. Zhang, L. Wang, W. Li, J. Zheng and J. Xu, *New Journal of Chemistry*, 2015, **39**, 4876-4881.