Cover Page for Supporting Information

Manuscript Title:

Alkaline-Earth Metallacyclic Complexes Bearing Diborane-Bridged Tetraamide Ligand: Synthesis, Structure and Fluorescence Property

Authors:

Nan Li, ${ }^{a}$ Zifeng Zhao, ${ }^{b}$ Chao Yu, ${ }^{a}$ Botao Wu, ${ }^{a}$ Zuqiang Bian, ${ }^{b}$ Wen-Xiong Zhang, ${ }^{* a}$ and Zhenfeng Xi ${ }^{a}$

Affiliations:

${ }^{a}$ Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University;
${ }^{b}$ Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials and Applications College of Chemistry, Peking University, Beijing 100871, China.

E-mail: wx_zhang@pku.edu.cn.

Contents

1) Experimental Details S2-S6
2) NMR Spectra of All New Complexes S5-S13
3) X-ray Crystallographic Studies S13-S19
4) References S20

1) Experimental Details

All reactions were carried out under an atmosphere of dry argon by using glove box ($<0.1 \mathrm{ppm}$ O_{2} and $\mathrm{H}_{2} \mathrm{O}$) with dry solvents under anhydrous conditions, unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification. Tetrahydrofuran (THF), hexane, ether and toluene were distilled from sodium/benzophenone ketyl immediately before use. Hexamethylphosphoramide (HMPA) was distilled from calcium hydride and stored under an argon atmosphere. NMR spectra were recorded with a Bruker AV $400 / 500$ spectrometer at 400 MHz (${ }^{1} \mathrm{H}$ NMR), $126 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR), $202 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right.$ NMR) and $160 \mathrm{MHz}\left({ }^{11} \mathrm{~B}\right.$ NMR). The following abbreviations are used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Elemental analysis was performed on a Vario EL elemental analyzer at the Analytical Center of Peking University. UV-Vis absorption spectra were recorded using a Shimadzu UV3600Plus UV-VIS-NIR spectrophotometer. The emission spectra and lifetime were obtained using a spectrometer (FLS920) from Edinburgh Instruments Ltd. The absolute quantum yields were measured using a Hamamatsu C9920-02 absolute PL quantum yield measurement system.

Complex 2a: To a solution of $\mathbf{1}(60 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was carefully added a THF (1.0 $\mathrm{mL})$ solution of dibenzylmagnesium ($63 \mathrm{mg}, 0.18 \mathrm{mmol}$). The mixture was stood at RT for 8 h until all precipitate was formed. After vacuum filtration, $\mathbf{2 a} \cdot 2$ THF was obtained as a THF-insoluble yellow crystal ($72 \mathrm{mg}, 70 \%$), which was suitable for X-ray crystallography. Addition of drops of HMPA to a suspension of $\mathbf{2 a} \cdot 2 \mathrm{THF}$ in THF gave a clear solution. The solution was evaporated under vacuum, leaving the product as a yellow solid, which was identified as $\mathbf{2 a} \cdot \mathrm{HMPA}$. Data for $\mathbf{2 a} \cdot \mathrm{HMPA}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 2.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 72 \mathrm{H}), 5.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.65(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 36.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 102.0,110.1,111.2,114.3,125.7,126.9,128.1,139.2,146.6,155.0 ;{ }^{31} \mathrm{P}$ NMR (202 MHz, THF- $\left.d_{\delta}\right) \delta 24.1 ;{ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{THF}-d_{8}$) δ 32.5. Anal. Calcd (\%). for

Complex 2b: To a solution of dibenzylmagnesium ($126 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (2.0 mL) was carefully added a THF (1.0 mL) solution of $\mathbf{1}(60 \mathrm{mg}, 0.18 \mathrm{mmol})$. The mixture was stood at RT for 8 h until all precipitate was formed. After vacuum filtration, $\mathbf{2 b}$ was obtained as a THF-insoluble yellow crystal ($97 \mathrm{mg}, 67 \%$), which was suitable for X-ray crystallography. Addition of drops of HMPA to a suspension of $\mathbf{2 b}$ in THF gave a light yellow precipitate, which were identified as $\mathbf{2 b} \cdot$ HMPA. No NMR spectrum of $\mathbf{2 b} \cdot$ HMPA was recorded due to the low solubility in various NMR solvents (0.5 mL). Data for 2b•HMPA: Anal. Calcd (\%). for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{~B}_{2} \mathrm{Mg}_{2} \mathrm{~N}_{16} \mathrm{O}_{4} \mathrm{P}_{4}$: C, 48.25; H, 7.73; N, 20.46; Found: C, 48.19; H, 7.69; N, 20.20.

Complex 3a: To a stirred solution of $\mathbf{1}(60 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF/HMPA ($3.0 / 0.15 \mathrm{~mL}$) was added dibenzylcalcium ($79 \mathrm{mg}, 0.18 \mathrm{mmol}$). After stirring at RT for 30 mins , the solvent was removed under reduced pressure and the residue was washed with ether $(2 \times 3 \mathrm{~mL})$ and dried under vacuum to obtain 3a as a yellow solid ($107 \mathrm{mg}, 65 \%$). Single crystals of $\mathbf{3 a} \cdot$ HMPA could be grown from a concentrated solution in THF/ether at room temperature. Data for $\mathbf{3 a} \cdot \mathrm{HMPA}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 2.56$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 72 \mathrm{H}), 5.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 37.0(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 100.8,109.5,110.7,113.4,125.8,126.6,128.1,139.4$, 147.2, 157.2; ${ }^{31} \mathrm{P}$ NMR (202 MHz, THF- d_{8}) $\delta 24.2 ;{ }^{11} \mathrm{~B}$ NMR (160 MHz , THF- d_{8}) $\delta 32.5$. Anal. Calcd (\%). for $\mathrm{C}_{44} \mathrm{H}_{86} \mathrm{~B}_{2} \mathrm{CaN}_{16} \mathrm{O}_{4} \mathrm{P}_{4}$: C, 48.53; H, 7.96; N, 20.58; Found: C, 47.89; H, 8.10; N, 20.65.

Complex 3b: To a stirred solution of $\mathbf{1}(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF/HMPA $(5.0 / 0.23 \mathrm{~mL})$ was added dibenzylcalcium ($104 \mathrm{mg}, 0.24 \mathrm{mmol}$). After stirring at RT for 30 mins , the solvent was removed under reduced pressure and the residue was washed with ether $(2 \times 4 \mathrm{~mL})$ and dried under vacuum to obtain 3b as a yellow solid ($107 \mathrm{mg}, 60 \%$). Single crystals of 3b could be grown from a concentrated solution in THF/ether at room temperature. Data for 3b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 2.58(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 108 \mathrm{H}), 5.67(\mathrm{~d}, J=78.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.04$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , THF- d_{8}) $\delta 36.9(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 105.5,107.0,127.2,128.2,141.7,159.9 ;{ }^{31} \mathrm{P}$ NMR (202 MHz , THF- d_{8}) $\delta 23.9$; ${ }^{11} \mathrm{~B}$ NMR (160 MHz, THF- d_{8}) δ 33.9. Anal. Calcd (\%). for $\mathrm{C}_{56} \mathrm{H}_{120} \mathrm{~B}_{2} \mathrm{Ca}_{2} \mathrm{~N}_{22} \mathrm{O}_{6} \mathrm{P}_{6}$: C, 45.28; H, 8.14; N, 20.75; Found: C, 45.73; H, 8.17; N, 20.77.

Complex 4a: Starting from dibenzylstrontium ($51 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $1(50 \mathrm{mg}, 0.15 \mathrm{mmol})$, complex $4 \mathbf{a}$ was obtained as a yellow solid ($105 \mathrm{mg}, 62 \%$ yield) in a manner analogous to that described for the synthesis of $\mathbf{3 a}$. Single crystals of $\mathbf{4 a} \cdot$ THF could be grown from a concentrated solution in THF/toluene at room temperature. Data for $\mathbf{4 a} \cdot \mathrm{THF}$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 1.77$ ($\mathrm{s}, 4 \mathrm{H} ; \beta$ - $\left.\mathrm{CH}_{2}, ~ \mathrm{THF}\right), 2.58\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 72 \mathrm{H}\right.$), $3.62\left(\mathrm{~s}, 4 \mathrm{H} ; \alpha-\mathrm{CH}_{2}, \mathrm{THF}\right), 5.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.15 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.67-6.63 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , THF- d_{8}) $\delta 36.9$ (d, $J=3.8 \mathrm{~Hz}$), 100.5, 108.8, 110.6, 113.1, $125.9,126.6,128.2,139.5,147.6,158.0 ;{ }^{31} \mathrm{P}$ NMR (202 MHz , THF- d_{8}) $\delta 24.1 ;{ }^{11} \mathrm{~B}$ NMR (160 MHz ,

THF- $\left.d_{8}\right) \delta$ 33.6. Anal. Calcd (\%). for $\mathrm{C}_{48} \mathrm{H}_{94} \mathrm{~B}_{2} \mathrm{SrN}_{16} \mathrm{O}_{5} \mathrm{P}_{4}$: C, 47.71 ; H, 7.84; N, 18.54; Found: C, 47.99; H, 7.86; N, 18.29.

Complex 4b: Starting from dibenzylstrontium ($82 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $1(40 \mathrm{mg}, 0.12 \mathrm{mmol})$, complex 4b was obtained as a yellow solid ($104 \mathrm{mg}, 55 \%$ yield) in a manner analogous to that described for the synthesis of $\mathbf{3 b}$. Single crystals of $\mathbf{4 b}$ could be grown from a concentrated solution in THF/toluene at room temperature. No NMR spectrum of crystal $\mathbf{4 b}$ was recorded due to the low solubility in various NMR solvents (0.5 mL). Data for 4b: Anal. Calcd (\%). for $\mathrm{C}_{56} \mathrm{H}_{120} \mathrm{~B}_{2} \mathrm{Sr}_{2} \mathrm{~N}_{22} \mathrm{O}_{6} \mathrm{P}_{6}$: C, 42.56; H, 7.65; N, 19.50; Found: C, 43.28; H, 7.19; N, 18.69.

2) NMR Spectra of All New Complexes

(HMPA) ${ }_{4}$
$\mathbf{2 a} \cdot$ HMPA

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 126 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.
$\stackrel{\circ}{\square}$

Figure S3. ${ }^{31} \mathrm{P}$ NMR Spectrum of $\mathbf{2 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 202 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S4．${ }^{11}$ B NMR Spectrum of $\mathbf{2 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 160 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$ ．

3a•HMPA

Figure S5．${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 400 \mathrm{MHz}\right.$, THF－$\left.d_{8}\right)$ ．

Figure S6. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3a•HMPA $\left(25^{\circ} \mathrm{C}, 126 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

$$
\underset{\underset{i}{*}}{\underset{\sim}{c}}
$$

Figure S7. ${ }^{31} \mathrm{P}$ NMR Spectrum of $\mathbf{3 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 202 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S8. ${ }^{11}$ B NMR Spectrum of $\mathbf{3 a} \cdot \mathrm{HMPA}\left(25^{\circ} \mathrm{C}, 160 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 b}\left(25^{\circ} \mathrm{C}, 400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 b}\left(25^{\circ} \mathrm{C}, 126 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.
$\stackrel{\sim}{\sim}$

Figure S11. ${ }^{31} \mathrm{P}$ NMR Spectrum of $\mathbf{3 b}\left(25^{\circ} \mathrm{C}, 202 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S12. ${ }^{11}$ B NMR Spectrum of $\mathbf{3 b}\left(25^{\circ} \mathrm{C}, 160 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 a \cdot T H F}\left(25^{\circ} \mathrm{C}, 400 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 a \cdot T H F}\left(25^{\circ} \mathrm{C}, 126 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

$$
\begin{aligned}
& \text { ơ } \\
& \underset{\sim}{\prime}
\end{aligned}
$$

Figure S15. ${ }^{31} \mathrm{P}$ NMR Spectrum of $\mathbf{4 a} \cdot \operatorname{THF}\left(25^{\circ} \mathrm{C}, 202 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right)$.

Figure S16. ${ }^{11}$ B NMR Spectrum of $\mathbf{4 a \cdot T H F}\left(25^{\circ} \mathrm{C}, 160 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$.

3) X-ray Crystallographic Studies

Data collections for all complexes were performed at 180 K or 100 K on a SuperNova diffractometer, using graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$). The structures were solved with the Olex2 ${ }^{[1]}$ and refined with the ShelXL ${ }^{[2]}$ refinement package using Least Squares minimization. Refinement was performed on F^{2} anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection and processing parameters for all complexes were summarized. Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1910590 (2a•2THF), CCDC 1910583 (2b), CCDC 1910586 (3a•HMPA), CCDC 1910587 (3b), CCDC 1910588 ($\mathbf{4 a \cdot T H F}$), CCDC 1910589 ($\mathbf{4 b}$). Copies of these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The slightly higher R factors of the crystal structures of 3 a and 3 b may be attributed to solvent (HMPA) disorder.

Figure S17. ORTEP Drawing and Crystallographic Data of Compound 2a•2THF. Thermal ellipsoids are shown at 30% probability. H atoms are omitted for clarity.

Table S1. Crystallographic Data and Structure Refinement Details of 2a•2THF.

Identification code	2a.2THF
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{MgN}_{4} \mathrm{O}_{5}$
Formula weight	716.80
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	11.2144(11)
b/Å	29.474(3)
c/Å	11.6873(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.772(9)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	3781.8(7)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.259
μ / mm^{-1}	0.097
$\mathrm{F}(000)$	1536.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.818 to 54.966
Index ranges	$-13 \leq \mathrm{h} \leq 14,-38 \leq \mathrm{k} \leq 30,-15 \leq 1 \leq 15$
Reflections collected	53589
Independent reflections	$8653\left[\mathrm{R}_{\text {int }}=0.0365, \mathrm{R}_{\text {sigma }}=0.0249\right]$
Data/restraints/parameters	8653/0/469
Goodness-of-fit on F^{2}	1.041
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0590, \mathrm{wR}_{2}=0.1522$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0713, \mathrm{wR}_{2}=0.1598$
Largest diff. peak/hole / e \AA^{-3}	0.81/-0.38

Figure S18. ORTEP Drawing and Crystallographic Data of Compound 2b. Thermal ellipsoids are shown at 30% probability. H atoms are omitted for clarity.

Table S2. Crystallographic Data and Structure Refinement Details of 2b.

Identification code	2b
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~B}_{2} \mathrm{Mg}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$
Formula weight	811.20
Temperature/K	119.99(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.0637(3)
b/Å	14.0668(6)
c/Å	16.2694(6)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.484(3)
γ°	90
Volume/ A 3	2070.47(14)
Z	2
¢calcg/ $/ \mathrm{cm}^{3}$	1.301
μ / mm^{-1}	0.112
$\mathrm{F}(000)$	868.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	7.15 to 54.97
Index ranges	$-11 \leq \mathrm{h} \leq 11,-18 \leq \mathrm{k} \leq 17,-21 \leq 1 \leq 20$
Reflections collected	17412
Independent reflections	$4662\left[\mathrm{R}_{\text {int }}=0.0401, \mathrm{R}_{\text {sigma }}=0.0370\right]$
Data/restraints/parameters	4662/0/262
Goodness-of-fit on F^{2}	1.056
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0646, \mathrm{wR}_{2}=0.1752$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0849, \mathrm{wR}_{2}=0.1885$
Largest diff. peak/hole / e \AA^{-3}	0.77/-0.46

Figure S19. ORTEP Drawing and Crystallographic Data of Compound 3a \cdot HMPA. Thermal ellipsoids are shown at 30% probability. H atoms are omitted for clarity.

Table S3. Crystallographic Data and Structure Refinement Details of 3a•HMPA.

Identification code	3a-HMPA
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{86} \mathrm{~B}_{2} \mathrm{CaN}_{16} \mathrm{O}_{4} \mathrm{P}_{4}$
Formula weight	1088.86
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	22.1723(9)
b/Å	14.0207(5)
c/Å	20.0498(8)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.430(4)
γ°	90
Volume/A ${ }^{3}$	5978.4(4)
Z	4
$\rho \mathrm{calcg} / \mathrm{cm}^{3}$	1.210
μ / mm^{-1}	0.264
F(000)	2336.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.954 to 52.042
Index ranges	$-28 \leq \mathrm{h} \leq 28,-18 \leq \mathrm{k} \leq 18,-23 \leq 1 \leq 26$
Reflections collected	66463
Independent reflections	$13570\left[\mathrm{R}_{\text {int }}=0.0348, \mathrm{R}_{\text {sigma }}=0.0285\right]$
Data/restraints/parameters	13570/606/829
Goodness-of-fit on F^{2}	1.036
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0826, \mathrm{wR}_{2}=0.2082$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1004, \mathrm{wR}_{2}=0.2216$
Largest diff. peak/hole / e \AA^{-3}	1.26/-0.92

Figure S20. ORTEP Drawing and Crystallographic Data of Compound 3b. Thermal ellipsoids are shown at 30% probability. H atoms are omitted for clarity.

Table S4. Crystallographic Data and Structure Refinement Details of 3b.

Identification code	3b
Empirical formula	$\mathrm{C}_{56} \mathrm{H}_{120} \mathrm{~B}_{2} \mathrm{Ca}_{2} \mathrm{~N}_{22} \mathrm{O}_{6} \mathrm{P}_{6}$
Formula weight	1485.33
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
$\mathrm{a} / \AA{ }^{\text {a }}$	12.5167(7)
b/Å	23.8825(10)
c/Å	14.1982(8)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	112.347(6)
$\gamma^{/ 0}$	90
Volume/ \AA^{3}	3925.5(4)
Z	2
pcalcg/ $/ \mathrm{cm}^{3}$	1.257
μ / mm^{-1}	0.326
F(000)	1596.0
Crystal size/ mm^{3}	$0.1 \times 0.1 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.824 to 52.044
Index ranges	$-14 \leq \mathrm{h} \leq 14,-27 \leq \mathrm{k} \leq 28,-16 \leq 1 \leq 16$
Reflections collected	38547
Independent reflections	6810 [Rint $=0.0668$, Rsigma $=0.0483$]
Data/restraints/parameters	6810/658/452
Goodness-of-fit on F^{2}	1.026
Final R indexes [$1>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0871, \mathrm{wR}_{2}=0.2293$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0986, \mathrm{wR}_{2}=0.2398$
Largest diff. peak/hole / e \AA^{-3}	1.06/-0.64

Figure S21. ORTEP Drawing and Crystallographic Data of Compound 4a•THF. Thermal ellipsoids are shown at 30% probability. H atoms are omitted for clarity.

Table S5. Crystallographic Data and Structure Refinement Details of 4a•THF.

Identification code	4a•THF
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{94} \mathrm{~B}_{2} \mathrm{~N}_{16} \mathrm{O}_{5} \mathrm{P} 4 \mathrm{Sr}$
Formula weight	1208.51
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	17.0218(5)
b/Å	17.4203(6)
c/Å	21.4191(7)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.718(3)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	6240.5(4)
Z	4
$\rho \mathrm{calcg} / \mathrm{cm}^{3}$	1.286
μ / mm^{-1}	1.022
F(000)	2568.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.754 to 54.97
Index ranges	$-19 \leq \mathrm{h} \leq 22,-22 \leq \mathrm{k} \leq 22,-27 \leq 1 \leq 27$
Reflections collected	31930
Independent reflections	$7136\left[\mathrm{R}_{\text {int }}=0.0375, \mathrm{R}_{\text {sigma }}=0.0277\right]$
Data/restraints/parameters	7136/0/356
Goodness-of-fit on F^{2}	1.048
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0314, \mathrm{wR}_{2}=0.0829$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0363, \mathrm{wR}_{2}=0.0860$
Largest diff. peak/hole / e \AA^{-3}	0.74/-0.40

Figure S22. ORTEP Drawing and Crystallographic Data of Compound 4b. Thermal ellipsoids are shown at 30% probability. H atoms are omitted for clarity.

Table S6. Crystallographic Data and Structure Refinement Details of 4b.

Identification code	4b
Empirical formula	$\mathrm{C}_{56} \mathrm{H}_{120} \mathrm{~B}_{2} \mathrm{~N}_{22} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Sr}_{2}$
Formula weight	1580.41
Temperature/K	99.8(5)
Crystal system	monoclinic
Space group	P2 $1 / \mathrm{c}$
a/Å	14.3034(2)
b/Å	23.7498(4)
c/Å	23.2747(4)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.702(2)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{\text {a }}$	7793.4(2)
Z	4
pcalcg/ $/ \mathrm{cm}^{3}$	1.347
μ / mm^{-1}	1.551
$\mathrm{F}(000)$	3336.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.1 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.944 to 50.054
Index ranges	$-17 \leq \mathrm{h} \leq 17,-28 \leq \mathrm{k} \leq 28,-27 \leq 1 \leq 27$
Reflections collected	92785
Independent reflections	$13532\left[\mathrm{R}_{\text {int }}=0.0392, \mathrm{R}_{\text {sigma }}=0.0299\right]$
Data/restraints/parameters	13532/2118/1029
Goodness-of-fit on F^{2}	1.022
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0636, \mathrm{wR}_{2}=0.1605$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0827, \mathrm{wR}_{2}=0.1742$
Largest diff. peak/hole / e \AA^{-3}	1.46/-0.78

4) References

[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341
[2] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

