Supporting Information for:

"Synthesis and structural characterization of 20-membered macrocyclic rings bearing *trans*-chelating bis(N-heterocyclic carbene) ligands and the catalytic activity of their palladium(II) complexes "

Rajesh Thapa and Stefan M. Kilyanek*

1.	NMR spectra of 2a	
	a. ¹ H NMR (CDCl₃ compound 2a , 400 MHtz)	S3
	b. ¹ H NMR (CD ₂ Cl ₂ compound 2a , 400 MHtz)	S4
	c. ¹³ C NMR (CDCl ₃ compound 2a , 400 MHtz)	S5
2.	NMR spectra of 2b	
	a. ¹ H NMR (CDCl₃ compound 2b , 400 MHtz)	S6
	b. ¹³ C NMR (CDCl ₃ compound 2b , 400 MHtz)	S7
	c. HSQC spectrum of 2b in CDCl₃ (full spectrum)	S8
3.	NMR spectra of 3a	
	a. ¹ H NMR (CD ₂ Cl ₂ compound 3a , 400 MHtz)	S9
	b. ¹ H NMR (CD ₃ SOCD ₃ compound 3a , 400 MHtz)	S10
	c. ¹³ C NMR (CD ₂ Cl ₂ compound 3a , 400 MHtz)	S11
4.	NMR spectra of 3b	
	a. ¹ H NMR (CDCl₃ compound 3b , 400 MHtz)	S12
	b. ¹³ C NMR (CDCl ₃ compound 3b , 400 MHtz)	S13
	c. HSQC spectrum of 3b in CDCl₃ (full spectrum)	S14
	d. HSQC spectrum of 3b in CDCl₃ (aromatic region)	S15
	e. COSY spectrum of 3b in CDCl ₃ (full spectrum)	S16
5.	NMR spectra of 3c	
	a. ¹ H NMR (CD₃SOCD₃ compound 3c in-situ, 400 MHtz)	S17
	b. ¹³C NMR (CD₃SOCD₃ compound 3c in-situ, 400 MHtz)	S18
6.	NMR spectra of 4a	
	a. ¹ H NMR (CDCl₃ compound 4a , 400 MHtz)	S19
	b. ¹³C NMR (CDCl₄ compound 4a, 400 MHtz)	S20
	c. ¹ H NMR (CD ₂ Cl ₂ compound 4a , 400 MHtz)	S21
	 d. ¹³C NMR (CD₂Cl₂ compound 4a, 400 MHtz) 	S22
	e. HSQC (CDCl ₃ , compound 4a 400 MHtz, full spectrum)	S23
	f. HSQC (CDCl ₃ , compound 4a 400 MHtz, aromatic region)	S24
	g. HSQC (CDCl ₃ , compound 4a 400 MHtz, aliphatic region)	S25
	h. COSY (CDCl ₃ , compound 4a 400 MHtz, full spectrum)	S26

7.	NMR spectra of 4b	
	a. ¹ H NMR (CD ₂ Cl ₂ compound 4b , 400 MHtz)	S27
	b. ¹³ C NMR (CD ₂ Cl ₂ compound 4b , 400 MHtz)	S28
	c. COSY (CD₂Cl₂, compound 4b, 400 MHtz)	S29
	 d. HSQC (CD₂Cl₂, compound 4b, 400 MHtz, full spectrum) 	S30
	 e. HSQC (CD₂Cl₂, compound 4b, 400 MHtz, aromatic region) 	S31
8.	NMR spectra of 5a	
	a. ¹ H NMR (CD ₂ Cl ₂ compound 5a , 400 MHtz)	S32
	b. ¹³ C NMR (CD ₂ Cl ₂ compound 5a , 400 MHtz)	S33
	c. COSY (CD₂Cl₂, compound 5a, 400 MHtz)	S34
	 d. HSQC (CD₂Cl₂, compound 5a, 400 MHtz) 	S35
	e. NOESY (CD ₂ Cl ₂ , compound 5a , 400 MHtz)	S36
	f. NOESY (CD ₂ Cl ₂ , compound 5a , 400 MHtz, aliphatic region)	S37
9.	NMR spectra of 5b	
	a. ¹ H NMR (CD ₂ Cl ₂ compound 5b , 400 MHtz)	S38
	b. ¹³ C NMR (CD ₂ Cl ₂ compound 5b , 400 MHtz)	S39
10	FT-MS 2a	S40
11	FT-MS 2b	S41
12	FT-MS 3a	S42
13	FT-MS 3b	S43
14	ESI-MS 4a	S44
15	FT-MS 4b	S45
16	FT-MS 5a	S46
17	FT-MS 5b	S47
18	X-Ray Crystallography Details for 5a	S48
19	X-Ray Crystallography Details for 5b	S50
20	X-Ray Crystallography Details for 4a	S52
21	X-Ray Crystallography Details for 4b	S54
22	X-Ray Crystallography Details for 3a	S56
23	X-Ray Acknowledgments and References	S58

NMR SPECTRA OF INTERMEDIATES AND PRODUCTS

¹H NMR (CDCl₃, Compound **2a**, 400 MHz)

¹H NMR (CD₂Cl₂, Compound **2a**, 400 MHz)

¹³C NMR (CDCl₃, Compound **2a**, 400 MHz)

0400000					
4410001	0000	S	-	5	-
10100101	707	6	H	-	0
	4 H 00	00	0	00	00
01000100					
HNNNNNH	0 1 1	00	-	4	00
\neg	\sim	S	S	4	2
VI V//	\vee		T	1	
					1.1

¹H NMR (CDCl₃, Compound **2b**, 400 MHz)

¹³C NMR (CDCl₃, Compound **2b**, 400 MHz)

¹H NMR (CD₂Cl₂, Compound **3a**, 400 MHz)

S9

¹H NMR (CD₃SOCD₃, Compound **3a**, 400 MHz)

¹³C NMR (CD₂Cl₂, Compound **3a**, 400 MHz)

¹H NMR (CDCl₃, Compound **3b**, 400 MHz)

S12

¹³C NMR (CDCl₃, Compound **3b**, 400 MHz)

S14

S15

COSY spectrum of **3b** in CDCl₃ (full spectrum)

¹H NMR (CD₃SOCD₃, Compound **3c in situ**, 400 MHz)

¹³C NMR (CD₃SOCD₃, Compound **3c in situ**, 400 MHz)

¹³C NMR (CDCl₃, Compound **4a**, 400 MHz)

¹H NMR (CD₂Cl₂, Compound **4a**, 400 MHz)

¹³C NMR (CD₂Cl₂, Compound **4a**, 400 MHz)

H	-	000		
0	00	0 M O M O	N 2 0 0	S
00		0 0 7 0	50700	N
•			てるなて	6
0	0	00 00 1- (1)		•
00	4	NNNN	00 M M M	0
\leftarrow	, _ 	\dashv \dashv \dashv \dashv	4 0 0 4	3
		\mathbb{N}/\mathbb{N}	$\setminus \vee /$	

HSQC (CDCl₃, Compound **4a**, 400 MHz) (aliphatic region)

¹H NMR (CD₂Cl₂, Compound **4b**, 400 MHz)

0 -	1 00	0	-	5	0	H	4	6	00	0	S	3	σ) (3	0	00	6	
00	71	-	N	0	0	5	\leftarrow	5	5	N	N	-	0	1 .	4	m	-	5	
50 4	1 4	4	4	4	3	3	3	N	N	3	5	-	Г	. 1	-	-		0	
•	• •	•	•			•				•		•			•	٠	•		
50	- 1-	5	5	5	5	5	5	5	5	D	4	4	c) (2	N	N	2	
		1	1		4	1	1	1	_	1	1	/			1	\downarrow			

¹³C NMR (CD₂Cl₂, Compound **4b**, 400 MHz)

S28

¹H NMR (CD₂Cl₂, Compound **5a**, 400 MHz)

0 F 10 0 F 01 7 0	705	000	00	SHM	C (V 00	0
0 0 0 1 0 0 0 1 0 0 0 0 1	H N N	000	00	001	000	N
4 4 M M M N N W	m m m	200	6	000	\neg \neg \neg	S
レレレレレトの	വവവ	4 4 4	3	0 0 M	200	H
	$\forall \forall$	\checkmark		\checkmark	\lor	

¹³C NMR (CD₂Cl₂, Compound **5a**, 300 MHz)

5	\sim	フフユフ				
-	5	0440	L	0	0	0
2	4	4041	4	6	0	3
•	•			1	N	N
0	0	0010	•	•	•	•
-	4	NNNN	0	3	-	0
	\vdash	\dashv \dashv \dashv \dashv	СI L	5	4	3
		\mathbb{N}/\mathbb{N}			1	

COSY spectrum of 5a in CD_2Cl_2

HSQC spectrum of **5a** in CD_2Cl_2

NOESY spectrum of **5a** in CD₂Cl₂ (Full spectrum)

¹H NMR (CD₂Cl₂, Compound **5b**, 400 MHz)

¹³C NMR (CD₂Cl₂, Compound **5b**, 300 MHz)

ESI-FTMS Mass Spectrum:

X-Ray Crystallography Details for 5a

Comments and Additional Details

In the case of complex **5a** the crystal was determined to be a 3-component twin by nonmerohedry during data collection. The individual reflections from each component were integrated using SAINT (1b). Absorption correction was applied using TWINABS (1c,1d) in the semi-empirical method (2) Initial structure solution was solution was determined using reflections from the primary component and the final refinement was performed against reflections from all components to give the refined twin ratios of 0.1076(11) and 0.0212(5). Details of the twin laws can be found in the cif file. The molecule was located on an inversion center, thus only ½ of the atoms are unique. The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A yellow, block-shaped crystal of dimensions 0.28 x 0.30 x 0.38 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 diffractometer with a Bruker APEX ccd area detector (1) and a sealed-tube Mo K α source (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 9819 peaks in the range 2.51 < θ < 27.45°. A total of 81927 data were measured in the range 1.760 < θ < 27.581° using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.757 and 0.812. The data were merged to form a set of 14455 independent data with R(int) = 0.0474 and a coverage of 100.0 %.

The monoclinic space group *P*2₁/*c* was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on *F*² (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 189 parameters were refined against 14455 data to give wR(*F*²) = 0.2326 and S = 1.004 for weights of w = 1/[σ^2 (*F*²) + (0.0950 P)² + 6.8000 P], where P = [F_0^2 + 2 F_c^2] / 3. The final R(*F*) was 0.0751 for the 9254 observed, [*F* > 4 σ (*F*)], data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 3.153 and -1.415 e/Å³, respectively.

Table S1. Crystal data and structure refinement for **5a.**

Empirical formula	C32 H42 Cl2 N6 Pd	
Formula weight	688.01	
Crystal system	monoclinic	
Space group	P21/c	
Unit cell dimensions	<i>a</i> = 11.612(4) Å	α = 90°
	b = 8.505(2) Å	β = 94.685(4)°
	<i>c</i> = 16.280(5) Å	γ= 90°
Volume	1602.4(8) Å ³	
Ζ, Ζ'	2, 0.5	
Density (calculated)	1.426 Mg/m ³	
Wavelength	0.71073 Å	
Temperature	100(2) K	
<i>F</i> (000)	712	
Absorption coefficient	0.777 mm ⁻¹	
Absorption correction	semi-empirical from equ	uivalents
Max. and min. transmission	0.812 and 0.757	
Theta range for data collection	1.760 to 27.581°	
Reflections collected	81927	
Independent reflections	14455 [R(int) = 0.0474]	
Data / restraints / parameters	14455 / 0 / 189	
<i>wR</i> (<i>F</i> ² all data)	wR2 = 0.2326	
<i>R</i> (<i>F</i> obsd data)	<i>R</i> 1 = 0.0751	
Goodness-of-fit on <i>F</i> ²	1.004	
Observed data $[I > 2\sigma(I)]$	9254	
Largest and mean shift / s.u.	0.000 and 0.000	
Largest diff. peak and hole	3.153 and -1.415 e/Å ³	

$$\begin{split} & wR2 = \{ \, \Sigma \, [w(F_{\rm o}{}^2 - F_{\rm c}{}^2)^2] \, / \, \Sigma \, [w(F_{\rm o}{}^2)^2] \, \}^{1/2} \\ & R1 = \Sigma \, ||F_{\rm o}| - |F_{\rm c}|| \, / \, \Sigma \, |F_{\rm o}| \end{split}$$

X-Ray Crystallography Details for 5b Comments and Additional Details

The intensity data were truncated to 0.920 Å because data in higher resolution shells all had $\langle F^2 \rangle \langle 2.0.$ The compound was located on an inversion center, thus one half of the atoms were unique. The CI was slightly disordered with Br. The occupancies for the CI and Br refined to 0.786(11) and 0.214(11). The atoms N3 and C11-C20 were disordered. The occupancies of N3, C11-C20 refined to 0.590(15) and 0.410(15) for the unprimed and primed atoms. Restraints on the positional of the disordered atoms and displacement parameters of all atoms were required. A RIGU restraint of modest strength is used in this case to account for issues resulting from parameter correlation that are common with lower resolution structures. Disorder in the benzylamine fragment of the ligand was modeled over two positions with similarity restraints placed on C-C and C-N bond lengths for the disordered atoms. The atoms of the disordered phenyl groups are restrained to fall on a plane using a FLAT instruction. Thermal ellipsoids of disordered atoms are refined with additional similarity restraints. The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A colourless, block-shaped crystal of dimensions 0.09 x 0.24 x 0.41 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 diffractometer with a Bruker APEX ccd area detector (1) and a sealed-tube Mo K α source (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 2452 peaks in the range 2.39 < θ < 19.24°. A total of 14735 data were measured in the range 1.950 < θ < 22.722° using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.2597 and 0.3782. The data were merged to form a set of 2508 independent data with R(int) = 0.1061 and a coverage of 99.8 %.

The monoclinic space group $P2_1/n$ was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 333 parameters were refined against 667 restraints and 2508 data to give wR(F^2) = 0.2636 and S = 1.007 for weights of w = $1/[\sigma^2 (F^2) + (0.1400 \text{ P})^2 + 20.3000 \text{ P}]$, where P = $[F_0^2 + 2F_c^2]/3$. The final R(F) was 0.0879 for the 1897 observed, [$F > 4\sigma(F)$], data. The largest shift/s.u. was 0.035 in the final refinement cycle. The final difference map had maxima and minima of 0.779 and -0.853 e/Å³, respectively.

S-50

Table S2. Crystal data and structure refinement for **5b**.

Empirical formula	0.57(C ₄₀ H ₄₆ Cl ₂	N ₆ Pd) 0.43(C ₄₀ H ₄₆ Br	Cl N ₆ Pd)
		C40 H46 Br0.43 Cl1.57 N6 F	Pd
Formula weight		807.24	
Crystal system		monoclinic	
Space group		P21/n	
Unit cell dimensions		<i>a</i> = 12.462(17) Å	α= 90°
		<i>b</i> = 10.751(15) Å	β= 103.665(19)°
		<i>c</i> = 14.335(19) Å	γ= 90°
Volume		1866(4) Å ³	
Z, Z'		2, 0.5	
Density (calculated)		1.437 Mg/m ³	
Wavelength		0.71073 Å	
Temperature		100(2) K	
<i>F</i> (000)		831	
Absorption coefficient		1.107 mm ⁻¹	
Absorption correction		semi-empirical from equ	uivalents
Max. and min. transmi	ssion	0.3782 and 0.2597	
Theta range for data c	ollection	1.950 to 22.722°	
Reflections collected		14735	
Independent reflection	S	2508 [R(int) = 0.1061]	
Data / restraints / para	meters	2508 / 667 / 333	
<i>wR</i> (<i>F</i> ² all data)		<i>wR</i> 2 = 0.2636	
R(F obsd data)		<i>R</i> 1 = 0.0879	
Goodness-of-fit on F^2		1.007	
Observed data [I > 2σ ((I)]	1897	
Largest and mean shif	t/s.u.	0.035 and 0.003	
Largest diff. peak and	hole	0.779 and -0.853 e/Å ³	

$$\begin{split} & wR2 = \{ \, \Sigma \, [w(F_{\rm o}{}^2 - F_{\rm c}{}^2)^2] \, / \, \Sigma \, [w(F_{\rm o}{}^2)^2] \, \}^{1/2} \\ & R1 = \Sigma \, ||F_{\rm o}| - |F_{\rm c}|| \, / \, \Sigma \, |F_{\rm o}| \end{split}$$

X-Ray Crystallography Details for 4a

Comments and Additional Details

In the case of complex **4a** the crystal was determined to be a 2 component twin by nonmerohedry during data collection and was twinned by non-merohedry with a 2-fold rotation about the [1 0 0] axis. The individual reflections from each component were integrated using SAINT (1b). Absorption correction was applied using TWINABS (1c,1d) in the semi-empirical method (2) Initial structure solution was determined using reflections from the primary component and the final refinement was performed against reflections from all components to give a refined twin ratio of 0.4134(10). Details of the twin laws can be found in the cif file. A dichloromethane was severely disordered and was best modeled using SQUEEZE (4). The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A colourless, needle-shaped crystal of dimensions 0.04 x 0.05 x 0.34 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 diffractometer with a Bruker APEX ccd area detector (1) and a sealed tube Mo K α source (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 5253 peaks in the range 2.26 < θ < 22.38°. A total of 49788 data were measured in the range 1.581 < θ < 27.723° using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.386 and 0.874. The data were merged to form a set of 11151 independent data with R(int) = 0.0427 and a coverage of 99.9 %.

The monoclinic space group *P*21/*c* was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 380 parameters were refined against 321 restraints and 11151 data to give wR(F^2) = 0.1415 and S = 1.007 for weights of w = 1/[σ^2 (F^2) + (0.0750 P)² + 4.2000 P], where P = [$F_o^2 + 2F_c^2$] / 3. The final R(F) was 0.0579 for the 7804 observed, [$F > 4\sigma(F)$], data. The largest shift/s.u. was 0.001 in the final refinement cycle. The final difference map had maxima and minima of 2.592 and -0.912 e/Å³, respectively.

Table S3. Crystal data and structure refinement for 4a

Empirical formula	C65 H86 Ag4 Br4 Cl2 N12		
Formula weight	1857.47		
Crystal system	monoclinic		
Space group	P21/c		
Unit cell dimensions	<i>a</i> = 9.840(4) Å	α = 90°	
	b = 22.482(8) Å	β= 93.172(5)°	
	<i>c</i> = 15.732(6) Å	γ= 90°	
Volume	3475(2) Å ³		
Z, Z'	2, 0.5		
Density (calculated)	1.775 Mg/m ³		
Wavelength	0.71073 Å		
Temperature	100(2) K		
<i>F</i> (000)	1844		
Absorption coefficient	3.536 mm ⁻¹		
Absorption correction	semi-empirical from equ	uivalents	
Max. and min. transmission	0.869 and 0.373		
Theta range for data collection	1.581 to 27.723°		
Reflections collected	49788		
Independent reflections	11151 [R(int) = 0.0427]		
Data / restraints / parameters	11151 / 321 / 380		
wR(F ² all data)	wR2 = 0.1415		
<i>R</i> (<i>F</i> obsd data)	<i>R</i> 1 = 0.0579		
Goodness-of-fit on <i>F</i> ²	1.007		
Observed data $[I > 2\sigma(I)]$	7804		
Largest and mean shift / s.u.	0.001 and 0.000		
Largest diff. peak and hole	2.592 and -0.912 e/Å ³		

$$\begin{split} & wR2 = \{ \, \Sigma \, [w(F_{\rm o}{}^2 - F_{\rm c}{}^2)^2] \, / \, \Sigma \, [w(F_{\rm o}{}^2)^2] \, \}^{1/2} \\ & R1 = \Sigma \, ||F_{\rm o}| - |F_{\rm c}|| \, / \, \Sigma \, |F_{\rm o}| \end{split}$$

X-Ray Crystallography Details for 4b Comments and Additional Details

The intensity data were truncated to 0.92 Å resolution because data in higher resolution shells all had $\langle F^2/\sigma \rangle \langle 2$. Both the metal complex and the anion were located on inversion centers. There were three regions of disorder in the structure. The occupancies of atoms C21-C23 refined to 0.50(3) and 0.50(3) for the unprimed and primed atoms. The occupancies of atoms C24-C26 refined to 0.57(3) and 0.43(3) for the unprimed and primed atoms. The occupancies of the DCM solvent atoms refined to 0.646(10) and 0.354(10) for the A and primed atoms. Restraints on the positional parameters of the disordered atoms and the displacement parameters of all atoms were required. The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A colourless, rod-shaped crystal of dimensions 0.06 x 0.06 x 0.23 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 diffractometer with a Bruker APEX ccd area detector (1) and a sealed-tube Mo K α source (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 1874 peaks in the range 2.40 < θ < 21.20°. A total of 17622 data were measured in the range 1.333 < θ < 22.721° using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.2313 and 0.3766. The data were merged to form a set of 5545 independent data with R(int) = 0.0990 and a coverage of 99.9 %.

The monoclinic space group *C*2/*c* was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on *F*² (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 529 parameters were refined against 588 restraints and 5545 data to give wR(*F*²) = 0.2256 and S = 1.009 for weights of w = 1/[σ^2 (*F*²) + (0.1000 P)² + 238.0000 P], where P = [$F_o^2 + 2F_c^2$] / 3. The final R(*F*) was 0.0835 for the 3917 observed, [*F* > 4 σ (*F*)], data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 1.485 and -1.066 e/Å³, respectively.

Table S4. Crystal data and structure refinement for 4b.

Empirical formula	(C ₈₀ H ₉₂ Ag ₃ Br ₂ N ₁₂) ⁺ (Ag Br ₂) ⁻ · 2(C H ₂ Cl ₂)				
	C ₈₂ H ₉₆ Ag ₄ Br ₄ Cl ₄ N ₁₂				
Formula weight	2142.62				
Crystal system	monoclinic				
Space group	C2/c				
Unit cell dimensions	<i>a</i> = 31.67(4) Å	α= 90°			
	<i>b</i> = 10.719(17) Å	β= 105.24(2)°			
	c = 25.17(4) Å	γ= 90°			
Volume	8244(21) Å ³				
Z, Z'	4, 0.5				
Density (calculated)	1.726 Mg/m ³				
Wavelength	0.71073 Å				
Temperature	100(2) K				
<i>F</i> (000)	4272				
Absorption coefficient	3.056 mm ⁻¹				
Absorption correction	semi-empirical from eq	uivalents			
Max. and min. transmission	0.3766 and 0.2313				
Theta range for data collection	1.333 to 22.721°				
Reflections collected	17622				
Independent reflections	5545 [R(int) = 0.0990]				
Data / restraints / parameters	5545 / 588 / 529				
<i>wR</i> (<i>F</i> ² all data)	wR2 = 0.2256				
<i>R</i> (<i>F</i> obsd data)	<i>R</i> 1 = 0.0835				
Goodness-of-fit on <i>F</i> ²	1.009				
Observed data $[I > 2\sigma(I)]$	3917				
Extinction coefficient	0.00174(15)				
Largest and mean shift / s.u.	0.000 and 0.000				
Largest diff. peak and hole	1.485 and -1.066 e/Å ³				

$$\begin{split} & wR2 = \{ \, \Sigma \, [w(F_{\rm o}{}^2 - F_{\rm c}{}^2)^2] \, / \, \Sigma \, [w(F_{\rm o}{}^2)^2] \, \}^{1/2} \\ & R1 = \Sigma \, ||F_{\rm o}| - |F_{\rm c}|| \, / \, \Sigma \, |F_{\rm o}| \end{split}$$

X-Ray Crystallography Details for 3a Comments and Additional Details

In the case of compound **3a** the crystal was determined to be a 2-component twin by nonmerohedry during data collection. The individual reflections from each component were integrated using SAINT (1b). Absorption correction was applied using TWINABS (1c,1d) in the semi-empirical method (2) Initial structure solution was determined using reflections from the primary component and the final refinement was performed against reflections from all components to give a refined twin ratio of 0.1578(8). Details of the twin laws can be found in the cif file. The molecule was located on an inversion center, thus only $\frac{1}{2}$ of the atoms are unique. The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A colourless, block-shaped crystal of dimensions 0.11 x 0.12 x 0.32 mm was selected for structural analysis. Intensity data for this compound were collected using a D8 diffractometer with a Bruker APEX ccd area detector (1) and a sealed-tube Mo K α source (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 2245 peaks in the range 2.43 < θ < 26.32°. A total of 149026 data were measured in the range 1.588 < θ < 27.569° using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.509 and 0.775. The data were merged to form a set of 11335 independent data with R(int) = 0.0759 and a coverage of 100.0 %.

The orthorhombic space group *Pbca* was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 218 parameters were refined against 11335 data to give wR(F^2) = 0.1750 and S = 1.006 for weights of w = 1/[σ^2 (F^2) + (0.1150 P)^2], where P = [$F_o^2 + 2F_c^2$] / 3. The final R(F) was 0.0597 for the 7787 observed, [$F > 4\sigma(F)$], data. The largest shift/s.u. was 0.001 in the final refinement cycle. The final difference map had maxima and minima of 3.282 and -0.783 e/Å³, respectively.

Table S5. Crystal data and structure refinement for 3a.

Empirical formula	(C ₃₂ H ₄₄ N ₆) ²⁺ 2Br ⁻ · 2(C H Cl ₃)			
	C34 H46 Br2 Cl6 N6			
Formula weight	911.29			
Crystal system	orthorhombic			
Space group	Pbca			
Unit cell dimensions	<i>a</i> = 9.350(3) Å	α= 90°		
	<i>b</i> = 16.797(6) Å	β = 90°		
	<i>c</i> = 25.649(8) Å	γ= 90°		
Volume	4028(2) Å ³			
Z, Z'	4, 0.5			
Density (calculated)	1.503 Mg/m ³			
Wavelength	0.71073 Å			
Temperature	100(2) K			
<i>F</i> (000)	1856			
Absorption coefficient	2.443 mm ⁻¹			
Absorption correction	semi-empirical from equ	uivalents		
Max. and min. transmission	0.775 and 0.509			
Theta range for data collection	1.588 to 27.569°			
Reflections collected	149026			
Independent reflections	11335 [R(int) = 0.0759]			
Data / restraints / parameters	11335 / 0 / 218			
wR(F ² all data)	<i>wR</i> 2 = 0.1750			
<i>R</i> (<i>F</i> obsd data)	<i>R</i> 1 = 0.0597			
Goodness-of-fit on <i>F</i> ²	1.006			
Observed data $[I > 2\sigma(I)]$	7787			
Largest and mean shift / s.u.	0.001 and 0.000			
Largest diff. peak and hole	3.282 and -0.783 e/Å ³			

$$\begin{split} & wR2 = \{ \, \Sigma \, [w(F_{\rm o}{}^2 - F_{\rm c}{}^2)^2] \, / \, \Sigma \, [w(F_{\rm o}{}^2)^2] \, \}^{1/2} \\ & R1 = \Sigma \, ||F_{\rm o}| - |F_{\rm c}|| \, / \, \Sigma \, |F_{\rm o}| \end{split}$$

Acknowledgments

The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers. These structures were determined by Douglas R. Powell

References

 (1) (a) Data Collection: APEX2 (2007) Bruker AXS Inc., Madison, Wisconsin, USA. (b) Data Reduction: SAINT (2007) Bruker AXS Inc., Madison, Wisconsin, USA. (c) *TWINABS* (2001). Bruker AXS Inc., Madison, Wisconsin, USA (d) Sheldrick, G. M. (1996). *TWINABS*. University of Göttingen, Germany.

(2) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke (2015). *J. Appl. Cryst.,* 48, 3-10.

(3) (a) G. M. Sheldrick (2015). *Acta Cryst., A71*, 3-8. (b) G. M. Sheldrick (2015). *Acta Cryst., C71*, 3-8.

(4) A. L. Spek (2015). Acta Cryst., C71, 9-19.