Positive shift in corrole redox potentials leveraged by modest β -CF₃-substitution helps achieve efficient photocatalytic C-H bond functionalization for group 13 complexes

Xuan Zhan^a, Pinky Yadav^a, Yael Diskin-Posner^b, Natalia Fridman^a, Mahesh Sundararajan^{c, d}, Zakir Ullah^{c,d}, Qiu-Cheng Chen^a, Linda J. W. Shimon^b, Atif Mahammed^a, David G. Churchill *^{a,c,d} Mu-Hyun Baik^{* c, d} and Zeev Gross *^a

a Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 320000, Israel

b Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel

c Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

d Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea.

	Table of contents	Page
	Table of contents	number
Fig S1	The ¹ H-NMR spectrum of 4CF₃-Ga	S5
Fig S2	The ¹⁹ F-NMR spectrum of 4CF₃-Ga	S5
Fig S3	The ¹ H-NMR spectrum of 3CF₃-Ga	S6
Fig S4	The ¹⁹ F-NMR spectrum of 3CF₃-Ga	S6
Fig S5	The ¹ H-NMR spectrum of 4CF₃-Al	S 7
Fig S6	The ¹⁹ F-NMR spectrum of 4CF₃-Al	S 7
Fig S7	The ¹ H-NMR spectrum of 3CF₃-Al	S 8
Fig S8	The ¹⁹ F-NMR spectrum of 3CF₃-Al	S 8
Fig S9	The APCI mass spectrum of 4CF₃-Ga	S9
Fig S10	The APCI mass spectrum of 3CF₃-Ga	S10
Fig S11	The APCI mass spectrum of 4CF₃-Al (negative mode)	S11
Fig S12	The APCI mass spectrum of 4CF₃-Al (positive mode)	S12
Fig S13	The APCI mass spectrum of 3CF₃-Al (negative mode)	S13
Fig S14	The APCI mass spectrum of 3CF₃-Al (positive mode)	S14
Fig S15	CV traces of –CF ₃ substituted compounds in reduction region	S15
Fig S16	H ₂ O ₂ detection by UV-vis method	S15
Table S1	Selected structural data for 3I-Al , 3I-Ga and 3CF₃-Ga .	S16
Table S2	Photophysical properties of investigated corrole complexes	S17
Table S3	Half wave redox potentials of investigated corroles	S18
Table S4	The retention times of involved solvents by GC	S19

Experimental section

Materials: Experimental reagents (Aldrich) and solvents were used without further purification. Silica gel 60 (230–400 mesh) was used for column chromatography.

Synthetic Methods.

Physical Methods: ¹H and ¹⁹F NMR spectra were recorded on a Bruker Avance III 400 spectrometer equipped with a 5 mm, automated tuning, and matching broad band probe (BBFO) with z-gradients. Chemical shifts are reported in ppm relative to the peak for residual hydrogen atoms of the deuterated solvent CDCl₃ ($\delta = 7.26$). Absorption spectra of the samples were measured on an Agilent 8454 spectrophotometer. Mass spectra for the compounds were performed on a Bruker Maxis Impact mass spectrometer, using APPI (atmospheric pressure photoionization) direct probe in either positive or negative mode.

Spectroscopy: Steady-state emission spectra were recorded on a Cary Eclipse fluorometer, at room temperature. Quantum yields (QY) of emission were calculated by using tetraphenylporphyrin (TPP) in toluene at room temperature ($\Phi_F = 0.11$) as the standard. The fluorescence lifetimes were measured by the combined spectrometer consisting of the EDINBURCH LIFESPEC II and the picosecond pulsed diode laser: All samples were recorded in toluene at room temperature.

Electrochemistry: Cyclic voltammetry measurements were carried out in acetonitrile (HPLC grade) containing 0.5 mM of the group 13 element Al and Ga complexes and 0.1 M TBAP (Fluka, for electrochemical analysis) as the electrolyte under an argon atmosphere. A conventional three-electrode system consisting of a glassy carbon working electrode, a platinum wire as counter electrode, and silver wire separated from the bulk solution by a sample holder with a porous glass frit in 0.1 M TBAP / 0.01 M AgNO₃ solution. Electrochemical measurements were recorded with an EmStat³⁺ electrochemical system with a scan rate of 100 mVs⁻¹. All the potentials are referenced vs the Fc⁺/0 redox potential added as an internal standard ($E_{1/2} = 0.0975$ V vs. Ag/Ag⁺ in 0.1 M TBAP / 0.01 M AgNO₃ solution).

Crystal Structure Determinations: For crystal structure determination of **3I-AI**, data were collected at 100 K on a dual source Rigaku XtaLab PRO diffractometer equipped with PILATUS 200 detector, with $[\lambda(Cu-K\alpha) = 1.54184 \text{ Å}]$ radiation. Structures were solved with SHELXT and further refined with full matrix least-squares based on F² with SHELXL. Hydrogens were calculated in riding mode. For the crystal structural determination of **3CF3-Ga**, the data collection was performed using monochromated Mo K α radiation, $\lambda = 0.71073 \text{ Å}$, using φ and ω scans to cover the Ewald sphere. Accurate cell parameters were obtained with the amount of indicated reflections. The structure was solved by direct methods (SHELXS-97) and refined by full matrix least-squares methods against F2 (SHELXL-97). All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotopically on calculated

positions using a riding model with their Uiso values constrained to 1.5 times the Ueq of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms.

Photocatalysis

HBr + **phenol** \rightarrow *para*-monobrominated phenol + *ortho*-monobrominated phenol: An acetonitrile solution (2.5 mL, with catalyst concentration that leads to OD = 2.0 at 400 nm) was charged with phenol (24 mg, 0.1 M) and aqueous 47% HBr (58 µL, 0.2 M) and placed in a 2.5 mL pyrex vial. The stirred solution was irradiated by a LED lamp with (200 W, $\lambda_{max} = 395 - 405$ nm, placed 15 cm from the vial) for 3 h. The internal temperature in the reaction solution was measured to be 36 °C. Prior to injection to the GC for product determination, the mixture was treated with solid K₂CO₃ to neutralize the acid and into dry the solution and nitrobenzene (5µL, 49 µM) was added as an external reference. Identification of reaction products (see Table S4) and determination of their response factors relative to nitrobenzene was performed by authentic pure products that were either purchased or independently prepared. The retention times checked by the GC for acetonitrile, phenol, nitrobenzene, 2-bromophenol and 4-bromophenol were determined to elute at around 1.3 min, 3.8 min, 6.5 min, 5.8 min and 13.4 min, respectively.

HBr + **toluene** \rightarrow **benzyl bromide**: An acetonitrile solution (2.5 mL, with catalyst concentration that leads to OD = 2.0 at 400 nm) was charged with toluene (108 µL, 0.4 M) and aqueous 47% HBr (116 µL, 0.4 M) and placed in a 2.5 mL vial made of Pyrex. The stirred solution was irradiated by a LED lamp with (200 W, λ_{max} = 395 - 405 nm, placed 15 cm from the vial) for 5 h. The internal temperature in the reaction solution was measured to be 36 °C. Prior to injection to the GC for product determination, the mixture was treated with solid K₂CO₃ to neutralize the acid and to dry the solution; nitrobenzene (5 µL, 49 µM) was added as external reference. Identification of reaction products (see Table S4) and determination of their response factors relative to nitrobenzene were performed by using pure products that were either purchased or independently prepared. The retention times checked by the GC for acetonitrile, toluene, nitrobenzene and benzyl bromide were determined around 1.3 min, 1.8 min, 6.5 min and 6.8 min.

Fig S1. ¹H-NMR spectrum and expanded regions for compound 4CF₃-Ga.

Fig S2. ¹⁹F-NMR spectrum and expanded regions for compound 4CF₃-Ga.

Fig S3. ¹H-NMR spectrum and expanded regions for compound 3CF₃-Ga.

Fig S4. ¹⁹F-NMR spectrum and expanded regions for compound 3CF₃-Ga.

Fig S5. ¹H-NMR spectrum and expanded regions for compound 4CF₃-Al.

Fig S6. ¹⁹F-NMR spectrum and expanded regions for compound 4CF₃-Al.

Fig S7. ¹H-NMR spectrum and expanded regions for compound **3**CF₃-Al.

Fig S8. ¹⁹F-NMR spectrum and expanded regions for compound **3CF₃-Al**.

Fig S9. APCI mass spectral data for compound 4CF₃-Ga.

Fig S10. APCI mass spectral data for compound 3CF₃-Ga.

Fig S11. APCI mass spectral data for compound 4CF₃-Al (negative mode).

Fig S12. APCI mass spectral data for compound 4CF₃-Al (positive mode).

Compound Spectrum SmartFormula Report					
Analysis Info			Acquisition Date 4/25/2018 5:50:39 PM		
Analysis Name	D:\Data\Gross\Gr	6285n000001.d			
Method	APCI pos SolidProbe.m		Operator Larisa Panz		
Sample Name	3-AI-(CF3)3			Instrument maXIs impact	282001.00128
Comment					
Acquisition Par	ameter		35 - 53 - 1		20022022
Source Type	APCI	Ion Polarity	Negative	Set Nebulizer	1.2 Bar
Focus	Active	Set Capillary	4000 V	Set Dry Heater	120 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	1.5 Vmin
Scan End	2500 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	2000 nA	Set APCI Heater	300 °C

-MS, 0.4-0.6min #20-36

Gr_6285n000001.d Bruker Compass DataAnalysis 4.2

by: Larisa Panz

Page 1 of 1

printed: 4/25/2018 5:54:38 PM

Fig S13. APCI mass spectral data for compound 3CF₃-Al (negative mode).

3. 	Comp	ound Spectrum	SmartF	ormula Report	
Analysis Info			Acquisition Date 4/24/2018 12:00:00 PM		
Analysis Name	D:\Data\Gross\Gr	6285000001.d			
Method Sample Name Comment	d APCI_pos_SolidProbe.m le Name 3-AI-CF3 nent			Operator Larisa Panz Instrument maXIs impact	282001.00128
Acquisition Par	ameter		2.5.7-574		2-20-20-20
Source Type	APCI	Ion Polarity	Positive	Set Nebulizer	1.2 Bar
Focus	Active	Set Capillary	3000 V	Set Dry Heater	120 °C
Scan Begin Scan End	50 m/z 2500 m/z	Sel Cheming Voltage	-500 V	Set Dry Gas	1.5 Vmin
Scan Eng	2000 1182	Set Corona	5000 nA	Set APCI Heater	300 °C

+MS, 0.5-0.7min #28-42

Gr_6285000001.d Bruker Compass DataAnalysis 4.2

printed: 4/24/2018 12:06:23 PM

Page 1 of 1

by: Larisa Panz

Fig S15. CV traces in the reduction region for all –CF₃ substituted compounds studied herein (room temperature, argon atmosphere, glassy carbon working electrode, ferrocene standard, 100 mVs⁻¹ scan rate, 0.5 mm complex, 0.1 M TBAP, in CH₃CN, V vs Ag/ AgNO₃).

Fig S16. The UV-vis spectra of a reaction mixture ($3CF_3$ -Ga (25 μ M) + 58 μ L HBr (0.2 M) + 24 mg phenol (0.1 M) in 2.5 mL MeCN, after irradiation (400 nm) for 2 h) before and after adding excess TBAI (tetrabutylammonium iodide).

Complex	Ga deviation [Å] from the N4 corrole plane	Ga-pyridine bond length [Å]	Ga-N(pyrrole)bond length ranges [Å]
3I-Al	0.00025	2.153, 2.155	1.895-1.904
3I-Ga	0.018	2.292, 2.230	1.912-1.952
3CF ₃ -Ga	0.023	-	1.918-1.971

3CF₃-Ga.

Complex	Soret band (nm)	Q band (nm)	λ _{em}	$\Phi_{\rm f}$	τ (ns)	Kr	Knr
	$(\varepsilon, 10^4)$	(ε, 10 ⁴)	(nm)			(10 ⁸ S ⁻¹)	(10 ⁸ S ⁻¹)
1-Ga	402	571	602	0.28	2.61	1.07	2.75
	424 (28.3)	597 (2.4)	657				
1-Al	401	572	627	0.76	6.32	1.20	0.38
	422 (29.4)	593	689				
3CF ₃ -Ga	405(2.96), 427 (7.16)	590(1.479),	623,	0.57	2.49	2.29	1.73
		615 (2.024)	677				
3CF ₃ -Al	403(2.98), 424 (7.77)	590 (1.808),	618,	0.71	3.30	2.37	0.88
		612 (2.203)	672				
4CF ₃ -Ga	360 (1.66),	574(1.559),	634,	0.55	4.54	1.21	4.02
	416(4.67), 430 (6.36)	596(2.033),	689				
		627 (3.386)					
4CF ₃ -Al	360(1.36), 426 (4.21)	572 (1.08),	635,	0.66	4.58	1.44	0.74
		595 (1.56),	687				
		620 (2.26)					

 Table S2. Photophysical properties of investigated corrole complexes recorded in toluene.

Complex	1 st oxidation	reduction	ΔE^{a}
	(V)	(V)	(V)
1-Ga	0.37	-	-
3CF ₃ -Ga	0.77	-1.26	2.02
4CF ₃ -Ga	0.83	-1.07, -1.64	1.90
1-Al	0.23	-	-
3CF ₃ -Al	0.62	-1.24	1.87
4CF ₃ -Al	0.74	-1.11, -1.59	1.85

 Table S3. Half wave redox potentials of investigated corroles.

Solvent	Retention time in GC (min)
Acetonitrile	~1.3
Benzaldehyde	~3.4
Phenol	~3.8
Nitrobenzene	~6.5
2-bromophenol	~5.8
4-bromophenol	~13.4
Benzyl bromide	~6.8

 Table S4. Retention times of involved solvents recorded by our GC.

END OF SUPPORTING INFORMATION