Electronic Supporting Information

Aggregation-InducedEmissionEnhancementandReversibleMechanochromicLuminescenceofQuinoline-Based Zinc(II)Schiff Base Complexes

Di Qiao,^{a,b} Jin-Yun Wang,^a Li-Yi Zhang,^a Feng-Rong Dai,^{*a} and Zhong-Ning Chen^{*a,b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
^b College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China

*To whom correspondence should be addressed. E-mail: dfr@fjirsm.ac.cn, czn@fjirsm.ac.cn; Tel: (+86) 591-6317-3171

Tuble 51. Crystanographic Data for Complexes 1–5.			
	1	2	3
empirical formula	$C_{36}H_{28}F_6N_4O_8S_2Zn \\$	$C_{38}H_{32}F_6N_4O_{10}S_2Zn$	$C_{40}H_{34}F_6N_4O_{10}S_2Zn$
formula weight	888.11	948.16	974.2
crystal system	monoclinic	triclinic	monoclinic
space group	<i>P</i> 2/c	<i>P</i> -1	<i>C</i> 2/c
<i>a</i> (Å)	21.4502(17)	13.802(2)	27.506(3)
<i>b</i> (Å)	10.4993(7)	14.659(2)	10.9018(12)
<i>c</i> (Å)	18.7583(14)	19.964(4)	18.564(2)
α (°)	90	87.244(6)	90
β (°)	114.568(2)	86.516(6)	130.821(4)
γ (°)	90	89.582(6)	90
$V(Å^3)$	3842.1(5)	4027.1(12)	4212.6(8)
Ζ	4	4	4
$D(calcd) (g cm^{-3})$	1.535	1.564	1.536
μ (Mo K_{α}) (mm ⁻¹)	0.833	0.804	0.771
<i>F</i> (000)	1808	1936.0	1992.0
θ range (°)	2.278 - 24.997	2.338 - 25.352	2.899 - 37.907
reflections collected / unique	48355 / 6760	86157 / 14701	66552 / 10037
data / restraints / narameters	$[R_{int} = 0.1144]$	$[R_{int} = 0.0438]$	$[R_{int} = 0.1370]$
data / restraints / parameters	6760 / 502 / 515	14701 / 185 / 1180	10037 / 0 / 285
GOF	1.039	1.084	1.036
$R_1(I>2\sigma(I))$	0.0479	0.0487	0.0606
$wR_2 (I > 2\sigma(I))$	0.1262	0.1162	0.1796
R_1 (all data)	0.0766	0.0568	0.0796
wR_2 (all data)	0.1623	0.1204	0.1946
$\Delta \rho / e A^{\circ -3}$	0.549, -0.733	0.786, -0.644	0.877, -1.225

Table S1. Crystallographic Data for Complexes 1–3.

Fig. S1. Experimental PXRD patterns of complexes 1–3 in comparison with simulated patterns calculated from single-crystal structures.

Fig. S2. FT-IR spectra of complexes 1–3.

Fig. S3. TGA plots of complexes 1–3.

Fig. S4. ¹H NMR spectrum of 1, 2-bis(2-((2-methyl-quinolin-8-yl)oxy)ethoxy)-ethane in CDCl₃.

Fig. S5. ¹H NMR spectrum of L2 in CD₃CN.

Fig. S6. ¹H NMR spectrum of complex 1 in CD₃CN.

Fig. S7. ¹³C NMR spectrum of complex 1 in CD₃CN.

Fig. S8. ¹H NMR spectrum of complex 2 in CD₃CN.

Fig. S9. ¹³C NMR spectrum of complex 2 in CD₃CN.

Fig. S10. ¹H NMR spectrum of complex 3 in CD₃CN.

Fig. S12. UV-Vis absorption spectra of complexes 1–3 in acetonitrile solutions.

Fig. S13. Particle size distributions of complexes 1-3 (25 μ M) in Et₂O/CH₃CN mixture with different Et₂O fractions, indicating the formation of nano-aggregated

phases.

Fig. S14. Emission spectra of complex 1 during the grinding-fuming cycle.

Fig. S15. Emission spectra of complex 2 during the grinding-fuming cycle.

Fig. S16. Emission spectra of complex 3 during the grinding-fuming cycle.

Fig. S17. UV-Vis spectra of complexes 1–3 in solid state.