Electronic Supporting Information

Room Temperature Phosphorescence of Mn(II) and Zn(II) Coordination Polymers for Photoelectron Response Applications

Xiao-Gang Yang,^a Zhi-Min Zhai,^{ab} Xiao-Min Lu,^a Ying Zhao,^{ac} Xin-Hong Chang,^a and Lu-Fang Ma^{*ab}

^{*a*} College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.

^b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

^c State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China. *E-mail: mazhuxp@126.com*

A. Experimental Section.

1. Materials and general procedures. All of the chemicals and reagents are commercially available and can be used directly without secondary treatment. Singlecrystal X-ray diffraction data for $[Mn_{0.5}(NH_{3}IPA)(H_{2}O)]$ (Mn-CP) and [Zn(NH₂IPA)(H₂O)] (Zn-CP) were collected at room temperature on an Oxford Diffraction SuperNova area-detector diffractometer using mirror optics monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The data collection, data reduction and empirical absorption correction were obtained by using CrysAlisPro.¹ The crystal structure was solved by using SHELXS-2014 and least-squares refined with SHELXL-2014,² and using anisotropic thermal displacement parameters for all non-hydrogen atoms. The crystallographic data for Mn-CP and Zn-CP are listed in Table S1. The crystallographic data for Mn-CP and Zn-CP are listed in Table S1. CCDC Nos. 1917025 and 1917026 contain the supplementary crystallographic data for Mn-CP and Zn-CP, respectively. This material obtained be free of charge via can http://www.ccdc.cam.ac.uk/conts/retrieving.html, from Cambridge or the Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or E-mail: deposit@ccdc.cam.ac.uk.

The powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8-ADVANCE X-ray diffractometer with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å). Measurements were made in a 2θ range of 5–50° at room temperature with a step of 0.02° (2θ), a counting time of 0.2 s/ step and the operating power was 40 KV, 40 mA. Thermogravimetric analysis (TGA) experiments were carried out using SII EXSTAR6000 TG/DTA6300 thermal analyzer from room temperature to 800 °C under a nitrogen atmosphere at a heating rate of 10 °C min⁻¹. The C, H, N analyses were carried out using a Perkin–Elmer Elementarvario elemental analysis instrument.

Photographs of NH₃IPA·0.5H₂O, NH₂IPA, Mn-CP and Zn-CP under UV excitation (365 nm) and day light were captured using a Canon digital camera (EOS 700D: the ISO value was 400, time of exposure was set to an automatic mode). Room temperature photoluminescence (PL) spectra and time-resolved lifetime were conducted on an Edinburgh FLS1000 fluorescence spectrometer. The fluorescence spectra were measured by a continuous radiation of xenon arc lamp (Xe900). While the phosphorescence spectra and phosphorescence decay curves were tested by a pulsing radiation of microsecond flash lamp with time-resolved single photon counting–multi-channel scaling (MCS) mode. The phosphorescence quantum yields (QY) at room temperature were estimated using an integrating sphere (F-M101, Edinburgh) accessary in FLS1000 fluorescence spectrometer.

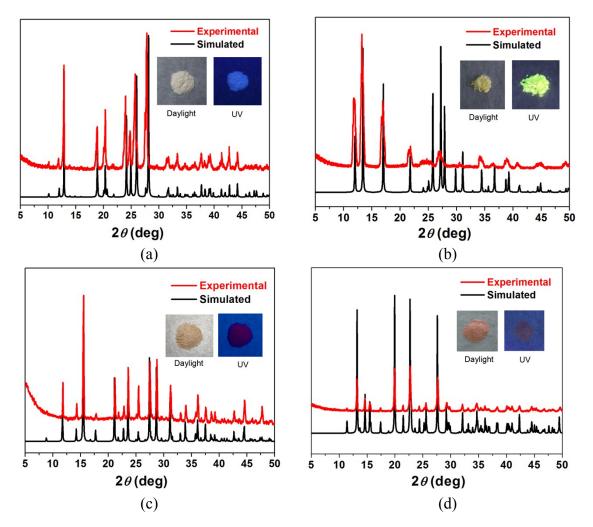
Optoelectronic measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Chenhua Co., Shanghai, China) in a standard three-electrode system using Mn/Zn-CP powder modified indium tin oxide (ITO) as the working electrode with a working area of 1.0 cm², a platinum wire electrode as a counter electrode, Ag/AgCl as a reference electrode, and 0.5 M Na₂SO₄ aqueous solution as electrolyte. The system was conducted in a quartz glass reactor ca. 50 cm³, and irradiated by a 300 W xenon lamp. The cyclic voltammograms (CV) was measured with a scan rate of 50 mV/s. Transient current density–time characteristics was tested at bias potential of 0 and -0.6 V vs. Ag/AgCl, respectively.

2. Synthesis of Mn-CP and Zn-CP crystals

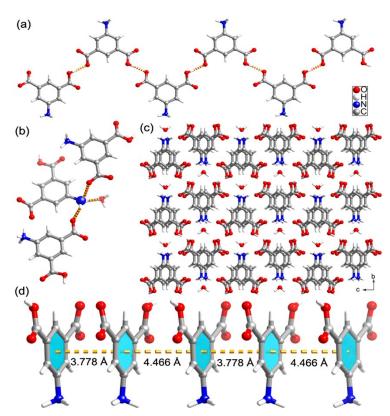
2.1 Synthesis of Mn-CP crystals

A mixture of NH₃IPA·0.5H₂O (0.5 mmol, 90.5 mg), MnSO₄·H₂O (1 mmol, 169.0 mg), acetonitrile (2mL) and H₂O (6 mL) was placed in a Teflon-lined stainless steel vessel, heated to 120 °C for three days, and then cooled to room temperature naturally. Light pink block crystals of Mn-CP were obtained, which were filtered, washed with water and ethanol several times, then dried under room temperature. Elemental analysis: Calc. (%) for C₈H₈Mn_{0.5}NO₅: C, 42.59; H, 3.57; N, 6.21; found (%): C, 43.11; H, 3.99; N, 6.79.

2.1 Synthesis of Zn-CP crystals


A mixture of NH₃IPA·0.5H₂O (0.5 mmol, 90.5 mg), ZnSO₄·7H₂O (1 mmol, 287.5 mg), acetonitrile (2mL) and H₂O (6 mL) was placed in a Teflon-lined stainless steel vessel, heated to 120 °C for three days, and then cooled to room temperature naturally. Light brown block crystals of Zn-CP were obtained, which were filtered, washed with water and ethanol several times, then dried under room temperature. Elemental analysis: Calc. (%) for C₈H₇ZnNO₅: C, 36.59; H, 2.69; N, 5.34; found (%): C, 37.02; H, 2.09; N, 6.03.

Crystalline state of $NH_3IPA \cdot 0.5H_2O$ sample was commercially available from Tokyo Chemical Industry Co. Ltd. A mixture of $NH_3IPA \cdot 0.5H_2O$ (1 mmol, 181.0 mg) and EtOH (8 mL) was placed in a Teflon-lined stainless steel vessel, heated to 120 °C for 4 h, and then cooled to room temperature naturally. Light yellow block crystals of NH_2IPA can obtained from the clear liquid.


3. Electronic structure calculations

All calculations were performed with the density functional theory (DFT) method using $Dmol^3$ module in Material Studio software package.³ Herein, the structure mode were directly used from the "cif" files of NH₃IPA·0.5H₂O, NH₂IPA and Mn/Zn-CP. The initial configuration was fully optimized by Perdew-Wang (PW91) generalized gradient approximation (GGA) method with the double numerical basis sets plus polarization function (DNP).

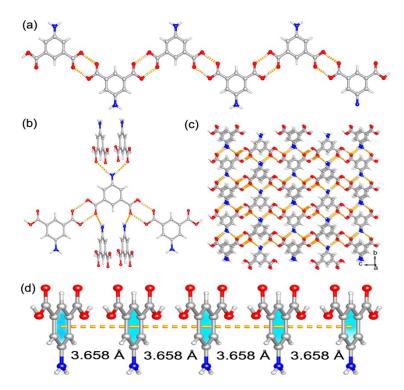

B. Supporting Figures

Figure S1. PXRD patterns of $NH_3IPA \cdot 0.5H_2O$ (a) NH_2IPA (b) and Mn-CP (c) and Zn-CP (d) crystal samples.

Figure S2. View of 1D zig-zag chain (a) and N/O–H···O hydrogen bonding between adjacent NH₃IPA molecules (b). (c) 3D supramolecular network of NH₃IPA·0.5H₂O. (d) Alternating arrangement of π ··· π stacking between NH₃IPA molecules.

Figure S3. View of 1D zig-zag chain (a) and N/O–H···O hydrogen bonding between adjacent NH₂IPA molecules (b). (c) 3D supramolecular network of NH₂IPA. (d) Arrangement of π ··· π stacking between NH₂IPA molecules.

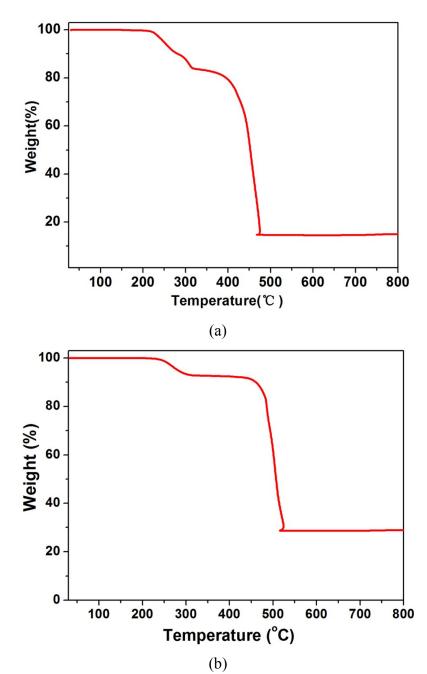
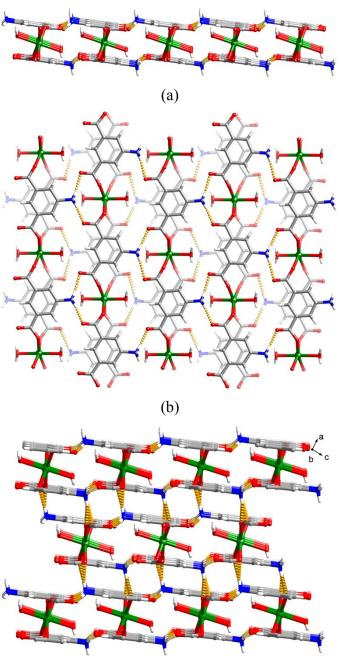
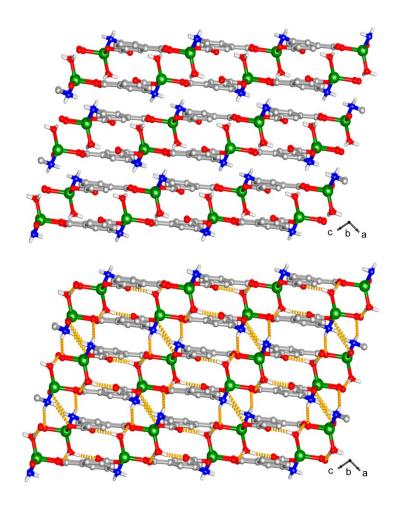




Figure S4. TGA curves for Mn-CP (a) and Zn-CP (b) crystal samples.

(c) Figure S5. View of the 2D layer for Mn-CP along *a* (a) and *b* (b) direction. (c) View of the 3D network along *b* direction.

Figure S6. View of the 3D network of Zn-CP along *b* direction extended from 2D layer through N–H \cdots O and O–H \cdots O hydrogen bonding.

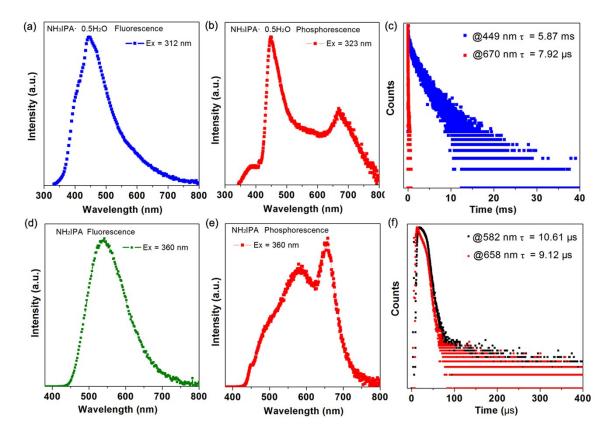
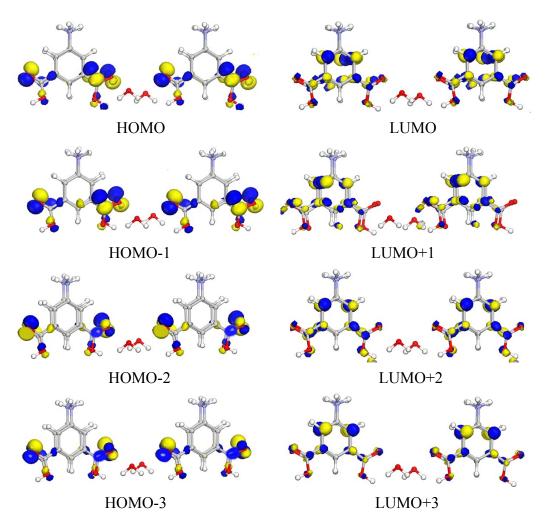



Figure S7. Fluorescence/phosphorescence spectra and phosphorescence decay curves of $NH_3IPA \cdot 0.5H_2O$ and NH_2IPA at room temperature.

Figure S8. The distributions of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of $NH_3IPA \cdot 0.5H_2O$. It can be observed that HOMO and LUMO are separate between $-COOH/-COO^-$ groups and benzene ring owing to the large torsion angles between two carboxylic groups and benzene rings.

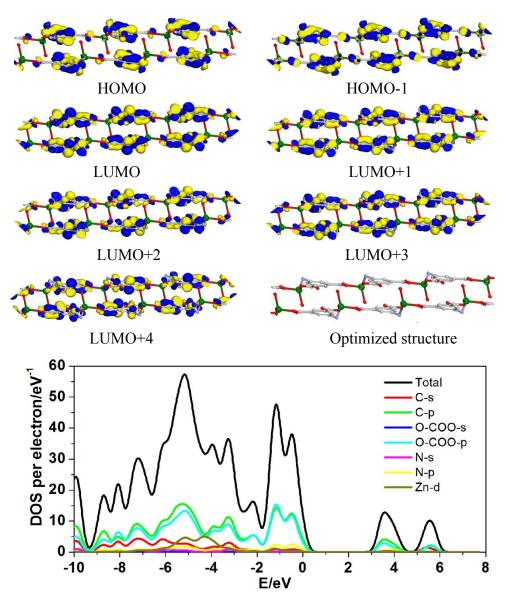
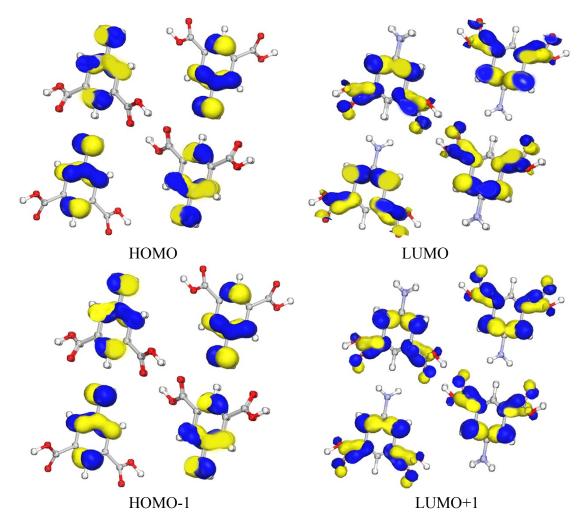



Figure S9. The optimized structure, the distributions of HOMOs/LUMOs, and TDOS/PDOS of Zn-CP.

Figure S10. The distributions of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of NH_2IPA . It can be observed that the electron cloud can transfer from $-NH_2IPA$ to -COOH group through benzene ring.

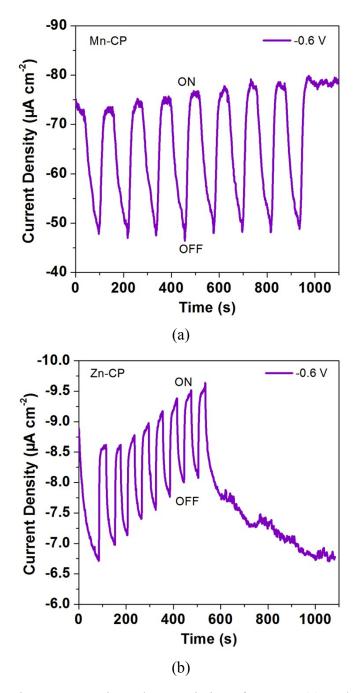
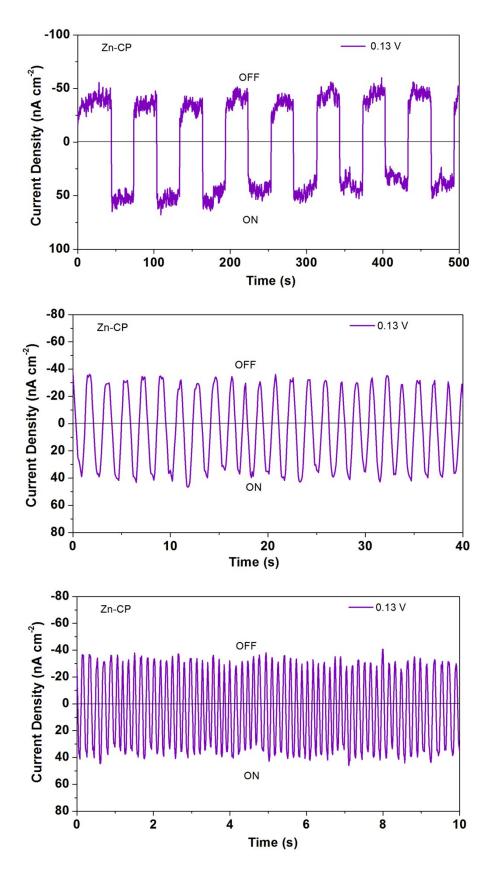



Figure S11. Transient current–time characteristics of Mn-CP (a) and Zn-CP (b) in 0.5 M Na_2SO_4 aqueous solution at -0.6 V bias potential (vs. Ag/AgCl).

Figure S12. Alternating current with frequency tunable of Zn-CP at bias potential of 0.13 V by changing the period of on–off illumination.

Samples	$[Mn_{0.5}(NH_3IPA)(H_2O)]$	(Mn-	[Zn(NH ₂ IPA)(H ₂ O)]	(Zn-
	CP)		CP)	
Chemical	$C_8H_8Mn_{0.5}NO_5$		C II ZeNO	
formula			C ₈ H ₇ ZnNO ₅	
Formula weight	225.63		262.54	
CCDC NO.	1917025		1917026	
Crystal system	Monoclinic		Monoclinic	
Space group	P2/n		$P2_{1}/n$	
a (Å)	7.0170(6)		9.0595(9)	
<i>b</i> (Å)	10.0069(8)		8.2813(7)	
<i>c</i> (Å)	11.4671(9)		11.6454(13)	
α (°)	90		90.00	
β (°)	94.909(7)		100.894(10)	
γ (°)	90		90.00	
$V(Å^3)$	802.25(11)		857.94(15)	
Ζ	4		4	
$D (g \text{ cm}^{-3})$	1.8679		2.0324	
$\mu ({\rm mm}^{-1})$	0.892		2.863	
$R_{\rm int}$	0.0327		0.0675	
Goof	1.012		0.911	
$R_1^a (I \ge 2\sigma (I))$	0.0531		0.0599	
wR_2^a ($I > 2\sigma(I)$)	0.1393		0.0969	

 $\label{eq:table_state} \textbf{Table S1}. Crystallographic data for [Mn(NH_3IPA)_2(H_2O)_2] and [Zn(NH_2IPA)(H_2O)].$

^a $R_1 = \Sigma(||F_o| - |F_c|)/\Sigma|F_o|$; ^b $wR_2 = [\Sigma w(|F_o|^2 - |F_c|^2)/\Sigma w(F_o^2)^2]^{1/2}$

D. Supporting References

- [1] CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.39.6a.
- [2] (a) G. M. Sheldrick, Acta Crystallogr. Sect. A. 2008, A64, 112–122; (b) G. M.
 Sheldrick, Acta Cryst. 2015, A71, 3–8.
- [3] (a) B. Delley, J. Chem. Phys. 1990, 92, 508–517; (b) B. Delley, J. Chem. Phys.
 2000, 113, 7756–7764; (c) Dmol³ Module, MS Modeling, Version 2.2; Accelrys Inc.: San, Diego, 2003; (d) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B. 1992, 46, 6671–6687.