Supporting information for:

Copper–Terephthalic Starch-Regulated Acid pH/Hydrogen Peroxide as Simultaneous-Responsive Fluorescence Probes for Lysosomes Imaging Jian Chen,^a Yubing Si,*^a Yibiao Liu,^a Saisai Wang,^a Shijie Wang,^a Ying Zhang,^a Baocheng Yang,^a Zuling Zhang,^b Shouren Zhang*^a ^aHenan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China ^bHenan Provincial Chemi-Industries Research Station Co., Ltd, Zhengzhou, Henan 450000, China **Corresponding Authors** Shouren Zhang E-mail: shourenzhang@infm.hhstu.edu.cn Yubing Si E-mail: yubingsi@infm.hhstu.edu.cn Supporting Information Figures

Figure S1. EDX spectrum of CuBDC-2.

Figure S2. (a) N_2 adsorption and desorption isotherm and (b) BJH pore distribution of the CuBDC-1 and CuBDC-2.

Figure S3. SEM images of CuBDC synthesized using different copper source with or

without soluble starch.

Figure S4. (a) UV-Vis spectra of supernatants withdrawn from the solution containing CuBDC-1 or CuBDC-2 at pH~4 or pH~7 after 4 h of dispersion. (b) Release of Cu²⁺ ions from CuBDC-2 in solutions at pH 4, 5, 6 and 7, respectively. (c) Fluorescence spectra of solution containing CuBDC-2 and H₂O₂ (1.5 mM) at pH 7 or pH 4 with or without extra Cu²⁺ added. (d) Zeta potential of CuBDC-1 and CuBDC-2 dispersed in solution at pH 7 or pH 4.

Figure S5. Fluorescence spectra of CuBDC-2 treated with different concentrations of

H₂O₂ at pH~4 (a), pH~5 (b), pH~6 (c), pH~7 (d) for 4 h.

Figure S6. (a) Fluorescence intensity change of mixture of Cu²⁺ and TA treated with

different concentrations of H_2O_2 and different pH values for 4 h. F indicated the fluorescence intensity of solution containing mixture of Cu^{2+} and TA and different concentrations of H_2O_2 at different pH values for 4 h, F_0 indicated the fluorescence intensity of distilled water containing mixture of Cu^{2+} and TA. (b) Relationship between the fluorescence intensity change and H_2O_2 concentration in solutions containing mixture of Cu^{2+} and TA at pH~4 for 4 h. F indicated the fluorescence intensity of solution containing mixture of Cu^{2+} and TA and different concentrations of H_2O_2 at pH~4 for 4 h, F_0 indicated the fluorescence intensity of distilled water containing mixture of Cu^{2+} and TA. (c) Relationship between the fluorescence intensity change and pH values in solution containing mixture of Cu^{2+} and TA and 1 mM H_2O_2 for 4 h. F indicated the fluorescence intensity of solution containing mixture of Cu^{2+} and 1 mM H_2O_2 at different pH values for 4 h, F_0 indicated the fluorescence intensity of solution containing mixture of Cu^{2+} and TA and 1 mM H_2O_2 for 4 h. F indicated the fluorescence intensity of solution containing mixture of Cu^{2+} and 1 mM H_2O_2 at different pH values for 4 h, F_0 indicated the fluorescence intensity of distilled water containing mixture of Cu^{2+} and TA.

Figure S7. Fluorescence intensity of CuBDC-2 incubated with physiologically important metal ions and bio-molecules including Fe^{3+} , Cu^{2+} , Mn^{2+} , Zn^{2+} , Ca^{2+} , Mg^{2+} , Co^{2+} , glucose and L-lysine at pH~4 or pH~7.

Figure S8. Fluorescence spectra of CuBDC-2 treated with 1mM H_2O_2 at pH~4 (a), pH~5 (b), pH~6 (c) or at pH~7 (d) over 48 h.

Figure S9. (a) Cell viability of HeLa cells treated with CuBDC-2 at 2.5, 7.5, 12.5, 17.5, 25 μ g/mL for 24 h or 48 h. (b) Growth inhibition of HeLa cells by different concentrations of CuBDC-2. IC50 was determined by sigmoidal curve fitting.

Figure S10. Fluorescence images of HeLa cells after co-incubation with CuBDC-2 for 4

h and then stained with ROS fluorescence probe DCFH-DA.

Figure S11. (a) Cell internalization of Cu^{2+} after incubated with CuBDC-2 for 6 h, 12 h or 24 h. (b) Cell internalization of Cu^{2+} after pretreated with different endocytosis inhibitors and then incubated with CuBDC-2 for 6 h.

Figure S12. Fluorescence intensity of HeLa cells incubated with CuBDC-2 for 24 h and then treated with buffer solution at different pH values (pH~4, pH~5, pH~6 or pH~7), containing H_2O_2 (0.1 mM or 1mM) and nigericin. I indicated the fluorescence intensity of cells incubated with CuBDC-2 and treated with specific pH value and H_2O_2 concentration, I_0 indicated the fluorescence intensity of cells only incubated with CuBDC-2.