gem-DiBromovinyl Boron Dipyrrins: Synthesis, Spectral Properties and Crystal Structures

Hasrat Ali^a, Brigitte Guerin^{a,b} and Johan E. van Lier^{a,b*}

Electronic Supplemental Information (ESI)

Fig. S1 Crystal structure packing of 2 (top) *b*-axis (bottom) *c*-axis

Fig. S3 Crystal structure packing of **10**.

Fig. S4 Crystal structure packing of 12.

Fig. S5 Crystal structure packing of 16.

Fig. S6 Crystal structure packing of 19.

Fig. S7 Crystal structure packing of 20.

Fig. S8 Crystal structure packing of 23.

Hirshfeld crystal surface analysis. Hirshfeld surfaces in the crystal structure and the associated 2D-fingerprint plots were calculated using the Crystal-Explorer17.5 program, which accepts CIF format file structure input. Hirshfeld surfaces and their associated two-dimensional fingerprint plots using **Crystal-Explorer** (**Version 3.1**), [*S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Eur. J. Inorg. Chem.*; 2012: 2653-2662], were employed to quantify the various intermolecular interactions. The Hirshfeld surface fingerprint plots of the molecules are mapped using the descriptor d_{norm} , which encompasses d_e (the distance of any surface point nearest to the internal atoms), d_i (the distance of the surface point nearest to the exterior atoms and also with the van der Waals radii of the atoms). These data were generated using this pair of coordinates. The Hirshfeld surfaces mapped over d_{norm} (range of -0.1-1.6 Å) are displayed in Fig S8. The value of d_{norm} is negative or positive depending on whether the intermolecular contacts are shorter or longer than the van der Waals separations.

Fig. S9 Hirshfeld surfaces (HSs) and 2D fingerprint plots of *gem*-dibromovinyl BODIPYs

Fig. S10 Relative percentage contributions of various non-covalent intermolecular contacts on the basis of Hirshfeld surface in BODIPYs.

General method for the synthesis of gem-dibromovinyl boron dipyrrins.

For 1 or 5: To a solution of BODIPY aldehyde (1 mmol) 7, 8, 11, 13, 15, 17, 18 and 22 in CH₂Cl₂ (4 mL) at 0 °C and CBr₄ (2 mmol) was added dropwise a solution of the corresponding phosphines, triphenyl phosphine (4 mmol) or P(Oi-Pr)₃ (3 mmol). After 30 min, the reaction was warmed to r.t. and extracted with CH₂Cl₂ (20-50 mL). After drying over MgSO₄, solvent was removed under vacuum and the product was purified over silica gel column. On elution using either a mixture of CH₂Cl₂-Hexane or EtOAc-hexane, bright coloured products were obtained. HPLC purification using a C₁₈ reversed column in CH₃CN-H₂O furnished analytically pure products.

Fig S11. ¹H NMR spectrum of compound **2** in CDCl₃

Fig S12. ¹³C NMR spectrum of compound **2** in CDCl₃

Fig S13. ¹⁹F NMR spectrum of compound 2 in CDCl₃

Fig S14. ¹¹B NMR spectrum of compound 2 in CDCl₃

Fig S15. ¹H-¹³C HSQC 2D NMR spectrum for compound **2** in CDCl₃

Fig S16. ESI-MS spectrum of compound 2.

Fig S17. ¹H NMR spectrum of compound 6 in CDCl₃

Fig S18. ¹³C NMR spectrum of compound **6** in CDCl₃

Fig S19. ¹⁹F NMR spectrum of compound 6 in CDCl₃

Fig S20. ¹¹B NMR spectrum of compound **6** in CDCl₃

Fig S21. ¹H-¹³C HSQC 2D NMR spectrum for compound **6** in CDCl₃

Fig S22. ESI-MS spectrum of compound 6

Fig S23. ¹H NMR spectrum of compound 9 in CDCl₃

Fig S24. ¹H NMR spectrum of compound 9 in DMFd₇

Fig S25. ¹³C NMR spectrum of compound **9** in CDCl₃

Fig S26. ¹⁹F NMR spectrum of compound **9** in CDCl₃

Fig S27. ¹¹ B NMR spectrum of compound 9 in CDCl₃

Fig S28. ¹H-¹³C HSQC 2D NMR spectrum for compound **9** in CDCl₃

Fig S30. ¹H NMR spectrum of compound **10** in CDCl₃

Fig S32. ¹³C NMR spectrum of compound **10** in CDCl₃

Fig S33. $^{19}\,F$ NMR spectrum of compound 10 in CDCl_3

Fig S34. ESI-MS spectrum of compound 10

Fig S35. ¹H NMR spectrum of compound 12 in CDCl₃

Fig S36. ¹³CNMR spectrum of compound **12** in CDCl₃

Fig S37. ¹⁹F NMR spectrum of compound **12** in CDCl₃

Fig S38. ¹H-¹³C HSQC 2D NMR spectrum for compound **12** in CDCl₃

Fig S39. ESI-MS spectrum of compound 12

Fig S40. ¹H NMR spectrum of compound 14 in CDCl₃

Fig S41. ¹³C NMR spectrum of compound **14** in CDCl₃

Fig S42. ¹⁹F NMR spectrum of compound **14** in CDCl₃

Fig S43. ¹H-¹³C HSQC 2D NMR spectrum for compound **14** in CDCl₃

Fig S45. ¹H NMR spectrum of compound **16** in CDCl₃

Fig S46. ¹³C NMR spectrum of compound **16** in CDCl₃

Fig S47. ¹H-¹³C HSQC 2D NMR spectrum for compound **16** in CDCl₃

Fig S48. ESI-MS spectrum of compound 16

Fig S49. ¹H NMR spectrum of compound **19** in CDCl₃

Fig S50. ¹³C NMR spectrum of compound **19** in CDCl₃

Fig S51. ¹⁹F NMR spectrum of compound **19** in CDCl₃

Fig S52. ¹¹ B NMR spectrum of compound **19** in CDCl₃

Fig S53. ¹H-¹³C HSQC 2D NMR spectrum for compound **19** in THF

Fig S54. ESI-MS spectrum of compound 19

Fig S55. ¹H NMR spectrum of compound **20** in CDCl₃

Fig S56. ¹³ C NMR spectrum of compound **20** in CDCl₃

Fig S58. ESI-MS spectrum of compound 20

Fig S59. ¹H NMR spectrum of compound **21** in CDCl₃

Fig S60. ¹³ C NMR spectrum of compound **21** in CDCl₃

Fig S61. ¹⁹ F NMR spectrum of compound **21** in CDCl₃

Fig S62. ¹H-¹³C HSQC 2D NMR spectrum for compound **21** in CDCl₃

Fig S63. ESI-MS spectrum of compound 21

Fig S64. ¹H NMR spectrum of compound 23 in CDCl₃

Fig S65. ¹³ C NMR spectrum of compound **23** in CDCl₃

Fig S66. $^{19}\,F$ NMR spectrum of compound ${\bf 23}$ in CDCl_3

Fig S67. $^{1}H^{-13}C$ HSQC 2D NMR spectrum for compound **23** in CDCl₃