Amino-substituted Cobalt(III)Corrole: Bifunctional

Electrocatalyst for Oxygen and Hydrogen Evolution Reactions

Amit Kumar, Sujesh S, Prachi Varshney, Amit Paul and Jeyaraman Sankar*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, M.P-462066 (India)

Table of Contents:

1. Electrocatalytic calculations	S2
2. Figures	S3-S13
2.1. Fig. S1 ESI-HRMS of 5-(4-nitrophenyl)dipyrromethane $[M + H]^+$	S 3
2.2. Fig. S2 ¹ H NMR spectrum of 5-(4-nitrophenyl)dipyrromethane	S 3
2.3. Fig. S3 ESI-HRMS of $H_3BNPC [M + H]^+$	S 4
2.4. Fig. S4 1 H and 19 F NMR spectra of H ₃ BNPC	S5
2.5. Fig. S5 ESI-HRMS of $H_3BAPC [M + H]^+$	S 6
2.6. Fig. S6 ESI-HRMS of Co(BAPC)Py ₂ $[M - 2Py]^+$	S 7
2.7. Fig. S7 ¹ H and ¹⁹ F NMR spectra of H_3BAPC	S 8
2.8. Fig. S8 ¹ H and ¹⁹ F NMR spectra of Co(BAPC)Py ₂	S 9
2.9 Fig. S9 UV-vis spectra of H_3BAPC and $Co(BAPC)Py_2$ in acetonitrile	S 10
2.10. Fig. S10 CV of Co(BAPC)Py $_2$ in positive potential window with varying concentration	
of catalyst and fixed amount of water	S11
2.11. Fig. S11 CV of Co(BAPC)Py ₂ in negative potential window with varying concentration	
of catalyst and fixed amount of TFA	S12
2.12. Fig. S12 Chronoamperogram for $Co(BAPC)Py_2$ catalyst for OER	S13
3. References	S14

1. Electrocatalytic calculations:

The electrochemical potential was converted relative to the normal hydrogen electrode (NHE; all potentials reported in this work are referenced to the NHE) following a literature protocol.^{S1} Current and peak potentials for the catalytic waves were compared without addition of H₂O or TFA (i_p) and with addition of H₂O or TFA (i_{cat}). Current ratios, i_{cat}/i_p , were plotted vs [H₂O]^{1/2} and [TFA]^{1/2} to determine first order rate constants (k) using the of eq. 1 for OER and eq. 2 for HER.

$$\frac{i_{cat}}{i_p} = \frac{(RT)^{1/2}}{0.446(nFv)^{1/2}} k_{cat}^{1/2} = \frac{(RT)^{1/2}}{0.446(nFv)^{1/2}} k^{1/2} (H_2 O)^{1/2}$$
(1)

$$\frac{i_{cat}}{i_p} = \frac{(RT)^{1/2}}{0.446(nFv)^{1/2}} k_{cat}^{1/2} = \frac{(RT)^{1/2}}{0.446(nFv)^{1/2}} k^{1/2} (TFA)^{1/2}$$
(2)

Wherein, R, T, n, F, and v are the universal gas constant, temperature, number of electrons transferred, Faraday constant, and scan rate, respectively.

The chronoamperometry experiment has been performed in stirring electrolyte solution (1.0 M KOH), in order to make the solution free from in-situ generated oxygen bubbles. A potential of 0.95 V versus NHE has been chosen for the chronoamperometry experiment. The turnover number (TON) and turnover frequency (TOF) have been estimated by using the eq. 3 and 4, wherein charge was calculated by integrating chronoamperogram. The number of electron transfer for water oxidation is 4 and *F* represents the Faraday's constant.

$$TON = \frac{Charge}{4 \times F \times catalyst concentration in moles}$$
(3)

$$TOF = \frac{TON}{time \ for \ electrolysis(t)} \tag{4}$$

2. Figures.

Fig. S1 ESI-HRMS of 5-(4-nitrophenyl)dipyrromethane $[M + H]^+$.

Fig. S2 ¹H NMR spectrum of 5-(4-nitrophenyl)dipyrromethane.

Fig. S3 ESI-HRMS of $H_3BNPC[M + H]^+$.

Fig. S4 ¹H and ¹⁹F NMR spectra of H_3BNPC .

Fig. S5 ESI-HRMS of $H_3BAPC [M + H]^+$.

Fig. S6 ESI-HRMS of $Co(BAPC)Py_2 [M - 2Py]^+$.

Fig. S7 ¹H and ¹⁹F NMR spectra of H_3BAPC .

Fig. S8 ¹H and ¹⁹F NMR spectra of Co(BAPC)Py₂.

Fig. S9 UV-Vis spectra of H₃BAPC (CH₂Cl₂, c; 0.62×10^{-6} M) and Co(BAPC)Py₂ (CH₂Cl₂/Pyridine; 99/01, c; 0.43×10^{-6} M).

Fig. S10 (a) Cyclic voltammograms of Co(BAPC)Py₂ in acetonitrile solutions with varying concentration of Co(BAPC)Py₂ (0.5 mM - 2.0 mM) with 3% of water and (b) corresponding linear plot for i_{cat} vs [cat], using 0.1 M nBu₄NPF₆ as supporting electrolyte with scan rate (v) of 50 mV s⁻¹.

Fig. S11 (a) Cyclic voltammograms of Co(BAPC)Py₂ in acetonitrile solutions with varying concentration of Co(BAPC)Py₂ (0.5 mM - 2.0 mM) and fixed amount of TFA (10 equiv.) and (b) corresponding linear plot for i_{cat} vs [cat], using 0.1 M nBu₄NPF₆ as supporting electrolyte with scan rate (v) of 50 mV s⁻¹.

Fig. S12 Chronoamperogram showing the stability up to 8.3 h at a constant potential of 0.95 V (vs. NHE) in 1.0 M KOH during water oxidation for $Co(BAPC)Py_2$ catalyst. The redline shows chronoamperogram in presence of catalyst while the black line represents chronoamperogram without catalyst.

3. References

S1. V. V. Pavlishchuk and A. W. Addison, Inorg. Chim. Acta, 2000, 298, 97.