DO2A-Based Ligands for Gallium-68 Chelation: Synthesis, Radiochemistry and *Ex Vivo* Cardiac Uptake

Supporting Information

Adam J. Smith,^{†,‡} Bradley E. Osborne,^{†,‡} George P. Keeling,[‡] Philip J. Blower,[‡] Richard Southworth,^{*,‡} Nicholas J. Long^{*,†}

[†]Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, U.K.

[‡]Division of Imaging Sciences and Biomedical Imaging, St. Thomas' Hospital, King's College London, London, SE1 7EH, U.K.

Contents

NMR Spectra	3
Bis-triphenyl(4-((4,10-bis(2-(<i>tert</i> -butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)benzyl)phosphonium dibromide (2a)	3
Bis-triphenyl(4-((4,10-bis(2-(<i>tert</i> -butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7- diyl)methyl)4-methylphenyl)phosphonium dibromide (2b)	4
Bis-triphenyl(4-((4,10-bis(2-(<i>tert</i> -butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)3,5-dimethylphenyl)phosphonium dibromide (2c)	5
DO2A-(xy-TPP) ₂ Bistrifluoroacetate (3a)	6
DO2A-(xy-TTP) ₂ Bistrifluoroacetate (3b)	7
DO2A-(xy-TXP) ₂ Bistrifluoroacetate (3c)	8
Di-tert-butyl 2,2'-(4,10-dibenzyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (5a)	9
DO2A-Bn ₂ (6a)	10
DO2A-Xy ₂ (6b)	11
RadioHPLC Analysis	12
[⁶⁸ Ga]Ga3a	12
[⁶⁸ Ga]Ga3b	14
[⁶⁸ Ga]Ga3c	15
[⁶⁸ Ga]Ga6b	15
Langendorff Isolated Heart Perfusion	17
Triple γ-Detector System Raw Data for [68Ga]Ga3c	17
Triple γ-Detector System Raw Data for [68Ga]Ga6b	18
Experimental for synthesis of [natGa]Ga3a	20
ES-TOF+ mass spectrum of [^{nat} Ga]Ga3a	20
¹ H NMR spectrum of [^{nat} Ga]Ga3a	21
¹³ C-(¹ H} NMR spectrum of [^{nat} Ga]Ga3a	. 21
³¹ P-{ ¹ H} NMR spectrum of [^{nat} Ga]Ga3a	22
LCMS spectrum of [natGa]Ga3a	22
HPLC Analysis of [natGa]Ga3a	23
VT ¹ H NMR spectrum of [^{nat} Ga]Ga3a	23
Experimental for synthesis of [natGa]Ga6a	24
¹ H NMR spectrum of [^{nat} Ga]Ga6a	24

NMR Spectra

Bis-triphenyl(4-((4,10-bis(2-(*tert*-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)benzyl)phosphonium dibromide (**2a**)

Figure S2: ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.

truncated for clarity.

Bis-triphenyl(4-((4,10-bis(2-(*tert*-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)3,5-dimethylphenyl)phosphonium dibromide (**2c**)

truncated for clarity.

Figure S8: ¹³C{¹H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.

DO2A-(xy-TTP)₂ Bistrifluoroacetate (**3b**)

Figure S10: ¹³C{¹H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.

Figure S12: ¹³C{¹H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.

Figure S14: ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.

Figure S16: ¹³C{¹H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.

Figure S18: ¹³C{¹H} NMR spectrum (MeOD, 100 MHz, 298 K)

RadioHPLC Analysis [⁶⁸Ga]Ga3a

Figure S19: RadioHPLC traces of the reaction time alteration experiments on [68Ga]Ga3a. Reaction conditions: 100 °C, 0.2 M NaOAc. Eluent gradient: 100 % A for 5 min, 0-100 % B in A for 20 min, 100 % B for 5 min; flow rate 1 mL min⁻¹. Traces offset for clarity.

Figure S20: RadioHPLC traces of the isolated kinetic peak experiments on [⁶⁸Ga]Ga3a. Reaction conditions: (Top) 65 min, 100°C, 0.2 M NaOAc; (Bottom) 100 min, 25°C, 0.2 M NaOAc. Eluent gradient as described for Figure S19.

Figure S21: Radio HPLC of the isolated thermodynamic peak of [68Ga]Ga3a. Reaction conditions: 65 min, 100°C, 0.2 M NaOAc. Eluent gradient as described for Figure S19.

Figure S22: RadioHPLC traces of the reaction temperature alteration experiments on [⁶⁸Ga]Ga3a. Reaction conditions: 30 min, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.

Figure S23: RadioHPLC traces of the sodium acetate concentration alteration experiments on [68Ga]Ga3a. Reaction conditions: 100 °C, 30 mins. Eluent gradient as described for Figure S19. Traces offset for clarity.

[⁶⁸Ga]Ga3b

Figure S24: RadioHPLC traces of the reaction time alteration experiments on [68Ga]Ga3b. Reaction conditions: 100 °C, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.

[⁶⁸Ga]Ga3c

Figure S25: RadioHPLC traces of the reaction time alteration experiments on [68Ga]Ga3c. Reaction conditions: 100 °C, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.

Figure S26: RadioHPLC traces of the reaction time alteration experiments on [68Ga]Ga6b. Eluent gradient as described for Figure S19. Reaction conditions: 100 °C, 0.2 M NaOAc. Traces offset for clarity.

Figure S27: RadioHPLC traces of the reaction temperature alteration experiments on [68Ga]Ga6b. Reaction conditions: 30 min, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.

Langendorff Isolated Heart Perfusion

Triple γ-Detector System Raw Data for [⁶⁸Ga]Ga3c

Figure S29: Experiment 2.

Triple γ-Detector System Raw Data for [⁶⁸Ga]Ga6b

Figure S31 Experiment 1.

Figure S33: Experiment 3.

Synthesis of [natGa]Ga-DO2A-(xy-TPP)2 Trisnitrate

Compound **3a** (0.08 g, 0.07 mmol) and Ga(NO₃)₃.H₂O (0.02 g, 0.07 mmol) were suspended in NH₄OAc (0.5 M, 0.15 mL), and heated at 100 °C for 30 min. The filtrate was isolated and the solvent was removed under reduced pressure, before the residue was purified by reverse-phase flash chromatography (C-18 SiO₂, 0-100 % B in A) to yield the desired product (0.05 g, 0.04 mmol, 58 %). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$ (ppm): 7.90 (6H, td, ³*J*_{HH} = 7.3, ⁴*J*_{HH} = 1.9 Hz, *p*-Ph), 7.77 – 7.63 (24H, m, *o/m*-Ph), 7.41 (4H, d, ³*J*_{HH} = 8.1 Hz, C₆<u>H</u>₄), 7.08 (4H, dd, ³*J*_{HH} = 8.3, ⁴*J*_{HP} = 2.6 Hz, C₆<u>H</u>₄), 4.99 (4H, d, ²*J*_{HP} = 15.3, C<u>H</u>₂), 4.01 (4H, s, C<u>H</u>₂), 3.94 (4H, s, C<u>H</u>₂), 3.58 – 3.34 (12H, m, macrocycle <u>H</u>), 3.02 – 2.90 (4H, m, macrocycle <u>H</u>). ¹³C{¹H}-NMR (100 MHz, MeOD) $\delta_{\rm C}$ (ppm): 173.7 (<u>C</u>=O), 136.5 (*p*-Ph), 135.4 (d, ³*J*_{CP} = 9.5 Hz, *m*-Ph), 133.3 (<u>C</u>₆H₄), 132.7 (d, ³*J*_{CP} = 5.3 Hz, <u>C</u>₆H₄), 132.4 (<u>C</u>₆H₄), 131.4 (d, ²*J*_{CP} = 12.7 Hz, *o*-Ph), 130.7 (<u>C</u>₆H₄), 119.0 (d, ¹*J*_{CP} = 85.7 Hz, *i*-Ph), 65.6 (<u>C</u>H₂), 61.1 (<u>C</u>H₂), 58.4 (macrocycle <u>C</u>), 55.6 (macrocycle <u>C</u>), 51.9 (macrocycle <u>C</u>), 30.4 (d, ¹*J*_{CP} = 48.5 Hz, <u>C</u>H₂P). ³¹P{¹H}-NMR (162 MHz, MeOD) $\delta_{\rm P}$ (ppm): 22.9. HRMS (ES-TOF+): *m/z* calcd for C₆₄H₆₆N₄O₄P₂Ga ([M]³⁺) 361.7938. found: 361.7928.

ES-TOF+ MS of [natGa]Ga-DO2A-(xy-TPP)2 Trisnitrate

C64H66N4O2P2Ga +3 ION = 361.7938

FOUND MASS = 361.7928

Figure S34: ¹H NMR of [natGa]Ga-DO2A-(xy-TPP)₂ Trisnitrate (MeOD, 400 MHz, 298 K)

Figure S35: ¹³C-{¹H} NMR of [^{nat}Ga]Ga-DO2A-(xy-TPP)₂ Trisnitrate (MeOD, 101 MHz, 298 K)

Figure S36: ³¹P-{¹H} NMR of [natGa]Ga-DO2A-(xy-TPP)₂ Trisnitrate (MeOD, 162 MHz, 298 K)

Figure S37: LCMS spectra of [natGa]Ga-DO2A-(xy-TPP)₂ Trisnitrate.

Figure S38: HPLC trace of [natGa]Ga-DO2A-(xy-TPP)₂ Trisnitrate. Eluent gradient as described for Figure S19.

Figure S39: VT ¹H NMR spectra of $[^{nat}Ga]Ga-DO2A-(xy-TPP)_2$ Trisnitrate (MeOD, 400 MHz) at different temperatures: 1 = 298 K, 2 = 233 K, 3 = 213 K, 4 = 193 K.

Synthesis of [natGa]Ga-DO2A-Bn2 Nitrate

Compound **6a** (0.10 g, 0.21 mmol) and Ga(NO₃)₃.H₂O (0.06 g, 0.21 mmol) were suspended in NH₄OAc (0.5 M, 1.0 mL), and heated overnight at 100 °C. The filtrate was isolated and the solvent was removed under reduced pressure, before the residue was purified by reverse-phase flash chromatography (C-18 SiO₂, 0-100 % B in A) to yield the desired product (0.01g, 0.02 mmol, 11 %). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$ (ppm): 7.59 – 7.50 (4H, m, *m*-Ph), 7.45 (6H, m, *o/p*-Ph), 4.12 (4H, s, CH₂), 4.00 (4H, s, CH₂), 3.60 (4H, td, ³*J*_{HH} = 13.8, ⁴*J*_{HH} = 4.9 Hz, macrocycle H), 3.41 (8H, m, macrocycle H), 3.02 – 2.93 (4H, m, macrocycle H). ¹³C-NMR (101 MHz, MeOD) $\delta_{\rm C}$ (ppm): 173.77 (C=O), 132.66 (*m*-Ph), 132.15 (*o*-Ph), 130.63 (*p*-Ph), 129.99 (*i*-Ph), 66.55, 61.11 (CH₂), 58.33, 55.74 (macrocycle, <u>C</u>). HRMS (ES-TOF+): *m/z* calcd for C₂₆H₃₄N₄O₄Ga ([M]⁺) 535.1830. found: 535.1836.

Figure S40: ¹H NMR of [^{nat}Ga]Ga-DO2A-Bn₂ Trisnitrate (MeOD, 400 MHz, 298 K) at different time points: 1 = 0 min, 3 = 30 min, 4 = 1 h, 5 = 2 h, 6 = 4 h.