Supporting Information

Formation of N-oxido copper ethylenediaminetetraacetate and propanediaminetetraacetate and their selective degradations to iminodiacetate and propanediaminediacetate

Yu-Chen Yang, *.a.b Rui Wu, b Min Yang, b Xi Chen, b Wei-Zheng Weng b and Zhao-Hui Zhou *.b
^a Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100,
People's Republic of China. E-mail: ycyang@nwafu.edu.cn; Tel: +86 29 87092662; Fax: +86 29 87092662.
^b State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University,
Xiamen, 361005, People's Republic of China. E-mail: zhzhou@xmu.edu.cn; Tel: +86 592 2184531; Fax: +86 592 2183047.

Figure S1. ORTEP plot of the anion structure in $K[Cu(Hedta)(H_2O)]$ (1) at the 30% probability levels.

- Figure S2. $(H_2O)_4$ water clusters in $Na_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n \cdot 13nH_2O(2)$.
- $\begin{array}{ll} \mbox{Figure S3.} & IR \mbox{ spectra of } K[Cu(Hedta)(H_2O)]\,(1) \ , \\ & Na_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n \cdot 13nH_2O\,(2), \ K[Cu(ida)(H_2O)_2Cl]\,(3), \\ & Na_{5n}[Cu_2(pdtaO_2)_2Cl]_n \cdot 12.5nH_2O\,(4) \ and \ [Cu_2(pdda)_2]_n \cdot nH_2O\,(5). \end{array}$
- $\begin{array}{ll} \mbox{Table S1} & \mbox{Selected bond distances for } K[Cu(Hedta)(\,\,H_2O)]\,(1)\,, \\ & \mbox{Na}_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n\cdot 13nH_2O\,(2),\, K[Cu(ida)(H_2O)_2Cl]\,(3), \\ & \mbox{Na}_{5n}O_n[Cu_2(HpdtaO_2)_2Cl]_n\cdot 12.5nH_2O\,(4)\,\,\mbox{and } [Cu_2(pdda)_2]_n\cdot nH_2O\,(5). \end{array}$
- Table S2. Selected bond distances and angles within the water clusters in $Na_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n \cdot 13nH_2O$ (2).
- Table S3. Bond valence sum calculations for copper complexes $1 \sim 5$.

Figure S1

Figure S3

 $\begin{array}{ll} \mbox{Table S1.} & \mbox{Selected bond distances for } K[Cu(Hedta)(H_2O)] \ (1), \\ Na_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n \cdot 13nH_2O \ (2), \\ K[Cu(ida)(H_2O)_2Cl] \ (3), \\ Na_{5n}O_n[Cu_2(HpdtaO_2)_2Cl]_n \cdot 12.5nH_2O \ (4) \ \mbox{and } [Cu_2(pdda)_2]_n \cdot nH_2O \ (5). \end{array}$

Bonds	1	Bonds	2	Bonds	3	Bonds	4	Bonds	5
Cu(1)-O(1)	1.967(4)	Cu(1)-O(1)	1.954(3)	Cu(1)-O(1)	1.969(3)	Cu(1)-O(1)	1.957(5)	Cu(1)-O(1)	1.948(2)
Cu(1)-O(5)	1.939(4)	Cu(1)-O(1a)	1.954(3)	Cu(1)-O(3)	1.969(3)	Cu(1)-O(2a)	2.988(5)	Cu(1)-O(3)	1.982(2)
Cu(1)-O(7)	2.488(4)	Cu(1)-O(9)	1.926(3)	Cu(1)-O(1w)	2.556(3)	Cu(1)-O(9)	1.938(5)	Cu(1)-O(2a)	2.221(2)
Cu(1)-O(1w)1.968(4)	Cu(1)-O(9a)	1.926(3)	Cu(1)-O(2w)	2.413(3)	Cu(1)-O(11)	1.958(5)	Cu(1)-N(1)	2.001(2)
Cu(1)-N(1)	2.340(4)	Cu(1)-O(5w)	2.645(3)	Cu(1)-N(1)	1.999(4)	Cu(1)-O(19)	1.917(5)	Cu(1)-N(2)	2.001(2)
Cu(1)-N(2)	2.054(5)	Cu(1)-O(5wa)	2.645(3)	Cu(1)-Cl(1)	2.281(1)	Cu(2)-O(5)	1.960(5)	Cu(1)-O(1w)	3.611(2)
		Cu(2)-O(7)	1.965(3)			Cu(2)-O(10)	1.918(5)		
		Cu(2)-O(7b)	1.965(3)			Cu(2)-O(15)	1.947(5)		
		Cu(2)-O(10)	1.934(3)			Cu(2)-O(16b)3.131(6)		
		Cu(2)-O(10b)	1.934(3)			Cu(2)-O(20)	1.929(5)		
		Cu(2)-O(8w)	2.481(3)			Cu(1)-Cl(1)	2.757(2)		
		Cu(2)-O(8wb)	2.481(3)			Cu(2)-Cl(1)	2.756(2)		

Symmetry transformations: for **2**, (a) -x + 1, -y + 2, -z; (b) -x + 1, -y + 1, -z + 1; for **4**, (a) -x + 1, -y + 2, -z + 1; (b) -x + 2, -y + 1, -z; for **5**, (a) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

D-H····A	D-H (Å)	H····A (Å)	D····A (Å)	D–H•••A(°)
O3w–H…O6wa	0.81(9)	2.09(8)	2.873(7)	161(7)
O4w-HO3wb	0.92(8)	1.99(8)	2.789(8)	144(8)
O6w-HO7wc	0.91(7)	1.85(7)	2.745(7)	168(7)

Table S2. Selected bond distances and angles within the water clusters in $Na_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n \cdot 13nH_2O$ (2).

Symmetry transformations: (a) -*x* + 1, -*y* + 2, -*z*; (b) -*x* + 1, -*y* + 2, -*z* + 1; (c) -*x* + 1, -*y* + 1, -*z*.

Cu ²⁺	Complexes	Cul	Cu2
+2	$K[Cu(Hedta)(H_2O)](1)$	1.965	
+2	$Na_{4n}[Cu_2(edtaO_2)_2(H_2O)_4]_n \cdot 13nH_2O(2)$	2.124	2.156
+2	$K[Cu(ida)(H_2O)_2Cl](3)$	1.806	
+2	$Na_{5n}[Cu_2(pdtaO_2)_2Cl]_n \cdot 12.5nH_2O(4)$	2.080	2.092
+2	$[Cu_2(pdda)_2]_n \cdot nH_2O(5)$	1.856	

Table S3. Bond valence sum calculations for copper complexes $1\sim 5.$