Supplementary Information for:

Abrupt spin crossover in iron(III) complexes with aromatic anions

Sharon E. Lazaro,^a Adil Alkaş,^b Seok J. Lee,^b Shane G. Telfer,^b Keith S. Murray,^c Wasinee Phonsri,^c Phimphaka Harding^{a*} and David J. Harding^{a*}

^a Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand

^b MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand ^c School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia

E-mail: kphimpha@mail.wu.ac.th or hdavid@mail.wu.ac.th **Website**: https://www.funtechwu.com

Contents

IR spectroscopy	2
Solution magnetic studies	4
X-ray crystallographic studies	6
DSC and TGA studies	8

IR spectroscopy

Figure S1 IR spectra of [Fe(qsal-X)₂]OTs·nH₂O.

Solution magnetic studies

The ¹H NMR studies to determine the magnetic susceptibility of [Fe(qsal-X)₂]OTs were recorded at 298 K in d⁶-DMSO with TMS added as an internal standard against a reference of DMSO on a 300 MHz Bruker FT-NMR spectrometer following a modified Evan's method. The reference solvent was placed in a co-axial insert with the solution of the complex in a standard NMR tube. The mass susceptibility was calculated using:

$$\chi_{\rm g} = \chi_{\rm o} + \frac{3\Delta v}{4\pi v_o c}$$

where χ_0 = the mass susceptibility of DMSO (-0.629 x 10⁻⁶ cm³·g⁻¹), $\Delta \upsilon$ (Hz) is the paramagnetic shift of the reference, υ_0 is the operating RF frequency of the NMR spectrometer (300.13 x 10⁶ Hz) and *c* is the concentration of the solution in g·cm⁻³. The mass susceptibility was then converted to molar susceptibility (χ_M). Diamagnetic corrections were applied and by multiplication with the measurement temperature (298 K) χ_M T was determined.

Figure S2 ¹H NMR spectrum of [Fe(qsal-X)₂]OTs in d⁶-DMSO showing the TMS shift.

Table S1 Selected	¹ H NMR data c	of 1-2 in d ⁶ -DMSO	at 298 K.
-------------------	---------------------------	---------------------------------------	-----------

Compound	Concentration (g/cm ³)	Δν (Hz)	χ _M T (cm³⋅mol⁻¹⋅K)	%HS
[Fe(qsal-Br) ₂]OTs	0.01	150.05	2.59	55
[Fe(qsal-I) ₂]OTs	0.01	175.25	3.03	66

X-ray crystallographic studies

	1 ·H ₂ O	1 ⋅H ₂ O	2·2 H ₂ O
	103 K	293 K	103 K
Formula	$C_{39}H_{27}Br_2FeN_4O_5S\cdot H_2O$	$C_{39}H_{27}Br_2FeN_4O_5S{\cdot}H_2O$	$C_{39}H_{27}I_2FeN_4O_5S\cdot 2H_2O$
Formula weight	897.39	897.39	1008.85
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pca2 ₁	Pca21	Pca2 ₁
a/Å	12.3433(8)	12.4432(3)	12.7045(3)
b/Å	14.3546(8)	14.6561(4)	14.1173(3)
<i>c</i> /Å	19.2425(14)	19.1005(13)	20.3416(14)
α/°	90	90	90
β/°	90	90	90
γ/°	90	90	90
Τ/Κ	103	293	103
Cell volume/Å ³	3409.4(4)	3483.3(3)	3648.3(3)
Z	4	4	4
Absorption coefficient (mm ⁻¹)	7.346	7.190	17.621
Reflections collected	18081	19306	17087
Independent reflections	2928	8805	5211
R _{int}	0.1447	0.1167	0.0791
Max. and min. transition	1.000/0.091	1.000/0.192	1.000/0.350
Restraints/parameters	235/464	21/383	85/486
Final <i>R</i> indices [/>2σ(/)]:	0.0859/0.1901	0.0773/0.2198	0.0622/0.1516
R1,wR2			
CCDC	1920841	1920840	1920842

Table S2 Crystallographic data and structure refinement parameters for [Fe(qsal-X)2]OTs•nH2O complexes.

Figure S3 PXRD of [Fe(qsal-Br)₂]OTs·H₂O.

Figure S4 PXRD of [Fe(qsal-I)₂]OTs·2H₂O.

Figure S5 View of the Type A and Type B π - π interactions in [Fe(qsal-I)₂]OTs·2H₂O **2**·2H₂O.

DSC and TGA studies

Figure S6 DSC plot for [Fe(qsal-Br)₂]OTs.

Figure S7 TGA studies of [Fe(qsal-X)₂]OTs.