The Supplementary Information for

Efficient Luminescent Properties and Cation Recognition Ability of Heavy Group 13 Element Complexes of N₂O₂- and N₂O₄-Type Dipyrrins

Akinobu Sumiyoshi, Yusuke Chiba, Ryota Matsuoka, Takumu Noda and Tatsuya Nabeshima*

Graduate School of Pure and Applied Sciences

and Tsukuba Research Center for Energy Materials Science (TREMS),

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

*Corresponding Author. Email: nabesima@chem.tsukuba.ac.jp

Table of Contents

Characterization of the compounds	3
UV-vis absorption/emission measurements	14
Computational studies	
Time-resolved fluorescence analyses	19
Ion sensing study	22
X-ray crystallographic analyses	40
References for the Supporting Information	

Characterization of the compounds

Figure S1 ¹H NMR spectrum of [L1Ga(L')₂] (600 MHz, $CDCl_3/CD_3OD = 1/1$ (v/v)).

Figure S2 ¹³C NMR spectrum of [L1Ga(L')₂] (151 MHz, CDCl₃/CD₃OD = 1/1 (v/v)).

Figure S3 ¹H NMR spectrum of $[L1In(L')_2]$ (600 MHz, DMSO-*d*₆).

Figure S4 13 C NMR spectrum of [L1In(L')₂] (151 MHz, DMSO- d_6).

Figure S5 ¹H NMR spectrum of $[L2In(L')_2]$ (600 MHz, DMSO-*d*₆).

Figure S6 ¹³C NMR spectrum of [**L2**In(L')₂] (151 MHz, DMSO-*d*₆).

Figure S7 ¹H NMR spectrum of H_3L3 (400 MHz, acetone- d_6).

Figure S8 ¹³C NMR spectrum of H₃L3 (101 MHz, acetone-*d*₆).

Figure S9 ¹H NMR spectrum of $[L3Al(L')_2]$ (L': solvent and/or pyridine) (600 MHz, DMSO*d*₆).

Figure S10 ¹³C NMR spectrum of [**L3**Al(L')₂] (L': solvent and/or pyridine) (151 MHz, DMSO-*d*₆).

Figure S11 ¹H NMR spectrum of [**L3**Ga(L')₂] (L': solvent and/or pyridine) (600 MHz, DMSO-*d*₆).

Figure S12 ¹³C NMR spectrum of [**L3**Ga(L')₂] (L': solvent and/or pyridine) (151 MHz, DMSO-*d*₆).

Figure S13 ¹H NMR spectrum of [**L3**In(L')₂] (L': solvent and/or pyridine) (600 MHz, DMSO-*d*₆).

Figure S14 ¹³C NMR spectrum of $[L3In(L')_2]$ (L': solvent and/or pyridine) (151 MHz, DMSO-*d*₆).

Figure S15 ¹H NMR spectrum of $[L3In(L')_2]$ (600 MHz, DMSO-*d*₆).

Figure S16 13 C NMR spectrum of [L3In(L')₂] (151 MHz, DMSO- d_6).

S12 / S43

Figure S18. ¹H NMR spectra of $[L3In(L')_2]$ with 1.6 eq. of pyridine (bottom) and that without pyridine (top) (400 MHz, acetone- d_6 , 298 K).

UV-vis absorption/emission measurements

Figure S19 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of $[L1Ga(L')_2]$ (L': solvent) (toluene/CH₃OH = 95/5 (v/v), 10 μ M, 293 K). (bottom) Optical properties of the complex.

Figure S20 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of [L1In(L')₂] (L': solvent) (toluene/CH₃OH = 95/5 (v/v), 10 μ M, 293 K). (bottom) Optical properties of the complex.

Figure S21 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of $[L2In(L')_2]$ (L': solvent) in various solvents (10 μ M, 293 K). (bottom) Optical properties of the complex.

Figure S22 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of $[L3Al(L')_2]$ (L': solvent and/or pyridine) in various solvents (10 μ M, 293 K). (bottom) Optical properties of the complex.

Figure S23 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of $[L3Ga(L')_2]$ (L': solvent and/or pyridine) in various solvents (10 μ M, 293 K). (bottom) Optical properties of the complex.

Figure S24 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of [L3In(L')₂] (L': solvent and/or pyridine) in various solvents (10 μ M, 293 K). (bottom) Optical properties of the complex.

Figure S25 (top) UV-vis absorption (solid line) and emission (dotted line) spectra of $[L3In(L')_2]$ (L': solvent) in various solvents (10 μ M, 293 K). (bottom) Optical properties of the complex.

Computational studies

DFT and TD-DFT calculations on the model compound [L2In(MeOH)₂] were conducted using the B3LYP functional with the 6-31+G* (for C, H, N, and O) and LANL2DZ (for In) basis sets. The geometry optimized structure and Kohn-Sham frontier orbitals of the complex was shown in **Figure S26** below. Although the HOMO and LUMO distribute over the entire conjugated π -system of the N₂O₄ dipyrrin unit, the indium center has no contribution to these orbitals. The lowest-energy absorption band of this complex was assigned by the TD-DFT calculation to the ${}^{1}\pi$ - π * (HOMO \rightarrow LUMO) transition of the N₂O₄ dipyrrin unit. These results suggest that the central metal ion should have little electronic contribution to the optical properties of the N₂O₄ dipyrrin complexes.

Figure S26 Geometry-optimized structure (left) and Kohn-Sham frontier orbitals (right) of $[L2In(MeOH)_2]$ obtained by DFT calculations at the B3LYP/6-31+G* (for C, H, N, and O) and B3LYP/LANL2DZ (for In) level. The vertical transition energies of the complexes calculated by the TD-DFT calculations at the same level are also shown in the right figure.

Time-resolved fluorescence analyses

Fluorescence lifetime measurements were carried out on a time correlated single photon counting (TCSPC) setup using Fluorolog-3, Horiba. All samples were excited at 634 nm, employing a light emitting diode laser (NanoLED-635L, Peak wavelength: 634 nm, Pulse duration: <200 ps) as a light source. The obtained data were fitted by using the Horiba DAS6 software.

Figure S27 (top) Fluorescence time decay curves of [L1Ga(L')₂] (L': solvent) and [L1In(L')₂] (L': solvent) (toluene/CH₃OH = 95/5 (v/v), 10 μ M, 298 K). (bottom) The determined fluorescence lifetimes of the complexes.

Figure S28 (top) Fluorescence time decay curves of [L3Al(L')₂], [L3Ga(L')₂], and [L3In(L')₂] (CHCl₃/CH₃OH = 9/1 (v/v), 10 μ M, 298 K, L': solvent and/or pyridine). (bottom) The determined fluorescence lifetimes of the complexes.

Figure S29 (top) Fluorescence time decay curves of $[L2In(L')_2]$ and $[L3In(L')_2]$ (CHCl₃/CH₃OH = 9/1 (v/v), 10 μ M, 298 K, L': solvent). (bottom) The determined fluorescence lifetimes of the complexes.

Figure S30 (top) Fluorescence time decay curves of $[L2In(L')_2]$ and $[L2In(L')_2]$ with alkaline earth ions (perchlorate salt, 5.5 equiv.) (CHCl₃/CH₃OH = 9/1 (v/v), 10µM, 298 K, L': solvent). (bottom) The determined fluorescence lifetimes of the complexes.

Figure S31 (top) Fluorescence time decay curves of $[L3In(L')_2]$ and $[L3In(L')_2]$ with alkaline earth ions (perchlorate salt, 5.5 equiv.) (CHCl₃/CH₃OH = 9/1 (v/v), 10µM, 298 K, L': solvent). (bottom) The determined fluorescence lifetimes of the complexes.

Ion sensing study

<u>A representative procedure (Ca(ClO₄)₂ and [L3In(L')₂])</u>

1.06 mg of [L3In]·2H₂O was dissolved in a mixed solvent of CHCl₃/EtOH = 9/1 (v/v) and diluted to 10 mL in a volumetric flask. 1.32 mL of this solution was then diluted to 25 mL with the same solvent in a volumetric flask to prepare a 8.9 μ M stock solution of the host [L3In(L')₂]. 1.57 mg of Ca(ClO₄)₂ was dissolved in the stock solution of [L3In(L')₂] and diluted to 10 mL in a volumetric flask. 1.29 mL of this solution was then diluted to 5 mL with the same stock solution in a volumetric flask to prepare a 130 μ M stock solution of the guest Ca(ClO₄)₂. To a UV cell (*l* = 1.0cm) was added 2.50 mL of the stock solution of [L3In(L')₂], and 0.02–0.30 mL each of the guest solution was titrated into the sample solution at the constant concentration of [L3In(L')₂]. UV-vis absorption and fluorescence measurements were performed during the titration.

For some of the host-guest complexes (Figs. S33, S35, S37, S55, S57, S59, and S61), the binding stoichiometry and association constants cannot be determined because the recognition process was complicated. For the other host-guest complexes (Figs. S38, S40, S42, S44, S46, S48, S50, S52, and S62), the association constants were determined by the least square fitting of 1:1 or 2:1 (host:guest) binding model using the TitrationFit software.^{S1}

Figure S32 UV-vis absorption (top) and emission (bottom) spectral changes of [L2In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S33 Changes in the emission intensity of $[L2In(L')_2]$ (8.9 µM) at 610 nm upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S34 UV-vis absorption (top) and emission (bottom) spectral changes of [L2In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Ca(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S35 Changes in the emission intensity of [L2In(L')₂] (8.9 μ M) at 638 nm upon the addition of Ca(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S36 UV-vis absorption (top) and emission (bottom) spectral changes of [L2In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S37 Changes in the emission intensity of [L2In(L')₂] (8.9 μ M) at 637 nm upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S38 UV-vis absorption (top) and emission (bottom) spectral changes of [L2In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S39 Changes in the emission intensity of [L2In(L')₂] (8.9 μ M) at 637 nm upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 3.9 \pm 0.1$ (log(M⁻¹))

Figure S40 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Al(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S41 Changes in the emission intensity of [L3Al(L')₂] (8.9 μ M) at 628 nm upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 5.12 \pm 0.04$ (log(M⁻¹))

Figure S42 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Al(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Ca(ClO₄)₂ (0–4.4 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S43 Changes in the emission intensity of [L3Al(L')₂] (8.9 μ M) at 626 nm upon the addition of Ca(ClO₄)₂ (0–4.4 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 2:1, log $K_{a1} = 8.3 \pm 0.8$ (log(M⁻¹), $K_{a2} = 6.5 \pm 0.9$ (log(M⁻¹)).

Figure S44 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Al(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S45 Changes in the emission intensity of [L3Al(L')₂] (8.9 μ M) at 627 nm upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 6.7 \pm 0.2$ (log(M⁻¹))

Figure S46 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Al(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S47 Changes in the emission intensity of [L3Al(L')₂] (8.9 μ M) at 630 nm upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 5.50 \pm 0.02$ (log(M⁻¹))

Figure S48 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Ga(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S49 Changes in the emission intensity of $[L3Ga(L')_2]$ (8.9 µM) at 645 nm upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 5.65 \pm 0.06$ (log(M⁻¹))

Figure S50 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Ga(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Ca(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S51 Changes in the emission intensity of $[L3Ga(L')_2]$ (8.9 µM) at 638 nm upon the addition of Ca(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 2:1, log $K_{a1} = 7.5 \pm 0.1$ (log(M⁻¹), $K_{a2} = 5.9 \pm 0.2$ (log(M⁻¹)).

Figure S52 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Ga(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S53 Changes in the emission intensity of $[L3Ga(L')_2]$ (8.9 µM) at 639 nm upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 7.6 \pm 0.6$ (log(M⁻¹))

Figure S54 UV-vis absorption (top) and emission (bottom) spectral changes of [L3Ga(L')₂] (L': solvent and/or pyridine, 8.9 μ M) upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S55 Changes in the emission intensity of $[L3Ga(L')_2]$ (8.9 µM) at 642 nm upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S56 UV-vis absorption (top) and emission (bottom) spectral changes of [L3In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S57 Changes in the emission intensity of $[L3In(L')_2]$ (8.9 µM) at 637 nm upon the addition of Mg(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S58 UV-vis absorption (top) and emission (bottom) spectral changes of [L3In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Ca(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S59 Changes in the emission intensity of [L3In(L')₂] (8.9 μ M) at 640 nm upon the addition of Ca(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S60 UV-vis absorption (top) and emission (bottom) spectral changes of [L3In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S61 Changes in the emission intensity of [L3In(L')₂] (8.9 μ M) at 639 nm upon the addition of Sr(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, λ_{ex} = 400 nm).

Figure S62 UV-vis absorption (top) and emission (bottom) spectral changes of [L3In(L')₂] (L': solvent, 8.9 μ M) upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm).

Figure S63 Changes in the emission intensity of [L3In(L')₂] (8.9 μ M) at 636 nm upon the addition of Ba(ClO₄)₂ (0–5.5 eq.) (CHCl₃/EtOH = 9/1 (v/v), 293 K, $\lambda_{ex} = 400$ nm). The solid line shows the least squares fitting to determine the binding constant K_a (host:guest = 1:1, log $K_a = 5.31 \pm 0.07$ (log(M⁻¹))

Table S1 Photoluminescence quantum efficiencies of the N₂O₄-type dipyrrin complexes with alkaline earth ions (CHCl₃/EtOH = 9:1 (v/v), perchlorate salts, 298 K). 4.4 eq. (for the entry with an asterisk) or 5.5 eq. (for the others) of each ion was added.

	none	Mg^{2+}	Ca ²⁺	Sr^{2+}	Ba ²⁺
$[L2In(L')_2]$	0.31	0.36	0.68	0.62	0.46
$[L3Al(L')_2]$	0.055	0.30	0.41*	0.31	0.34
[L3 Ga(L') ₂]	0.009	0.31	0.49	0.34	0.11
$[L3In(L')_2]$	0.006	0.008	0.33	0.24	0.15

X-ray crystallographic analyses

[L1Ga(py)]

A single crystal of [L1Ga(py)] suitable for X-ray diffraction analysis was obtained by slow evaporation of CHCl₃/pyridine solution of [L1Ga(L')₂].

Crystallographic data: C₇₀H₅₆GaN₆O₄, Fw = 1184.65, purple block, $0.57 \times 0.19 \times 0.08 \text{ mm}^3$, monoclinic, space group P_{21}/n , a = 11.8153(7) Å, b = 17.1707(10) Å, c = 14.7240(8) Å, $\beta = 110.951(2)^\circ$, V = 2789.7(3) Å³, Z = 4, T = 120(2) K, $\lambda(MoK\alpha) = 0.71073$ Å, $\theta_{max} = 28.281^\circ$, $R_1 = 0.0479$, $wR_2 = 0.1580$, GOF = 1.002. CCDC No. 1915400.

Figure S64 The molecular structure of the dimer of [L1Ga(py)] determined by X-ray crystallographic analysis: front view (a) and top view (b). An ellipsoidal model (50% probability). Hydrogen atoms are omitted for clarity. C, light green; N, blue; O, red; Ga, pink.

$[L2In(H_2O)(CH_3OH)]$

A single crystal of $[L2In(H_2O)(CH_3OH)]$ suitable for X-ray diffraction analysis was obtained by vapor diffusion of pentane to CHCl₃/CH₃OH = 19/1 solution of $[L2In(L')_2]$.

Crystallographic data: C_{102.5}H₁₁₁In₃N₆O₂₀, Fw = 2091.43, blue plate, $0.17 \times 0.16 \times 0.05$ mm³, triclinic, space group *P*-1, a = 13.5815(10) Å, b = 14.0146(10) Å, c = 25.346(2) Å, $\alpha = 80.911(2)^{\circ}$, $\beta = 86.459(2)^{\circ}$, $\gamma = 82.244(2)^{\circ}$, V = 4716.1(6) Å³, Z = 2, T = 120 K, λ (MoK α) = 0.71073 Å, $\theta_{max} = 26.372^{\circ}$, $R_1 = 0.0604$, $wR_2 = 0.1393$, GOF = 1.171. CCDC No. 1935885.

Figure S65 The molecular structure of $[L2In(H_2O)(CH_3OH)]$ determined by X-ray crystallographic analysis: front view (a) and top view (b). Three non-equivalent molecules in an asymmetric unit are shown. An ellipsoidal model (50% probability). Hydrogen atoms are omitted for clarity. C, light green; N, blue; O, red; In, yellow.

[**L3**Ga(py)₂]

A single crystal of $[L3Ga(py)_2]$ suitable for X-ray diffraction analysis was obtained by vapor diffusion of hexane to CHCl₃/pyridine = 1/1 solution of $[L3Ga(L')_2]$.

Crystallographic data for Lo_HGa(py)₂: C₅₅H₄₈GaN₇O₄, Fw = 940.72, green plate, 0.010 × 0.13 × 0.29 mm³, monoclinic, space group $P2_1/n$, a = 9.4808(8) Å, b = 13.7142(12) Å, c = 35.759(3) Å, $\beta = 94.458(2)^\circ$, V = 4635.4(7) Å₃, Z = 4, T = 120 K, λ (MoK α) = 0.71073 Å, $\theta_{max} = 30.033^\circ$, $R_1 = 0.0743$, $wR_2 = 0.1493$, GOF = 1.191. CCDC No. 1915401.

Figure S66 The molecular structure of $[L3Ga(py)_2]$ determined by X-ray crystallographic analysis: front view (a) and top view (b). An ellipsoidal model (50% probability). Hydrogen atoms are omitted for clarity. C, light green; N, blue; O, red; Ga, pink.

References for the Supporting Information

S1 K. Akine, *TitrationFit, ver 1.1.0, For analysis of titration data in host-guest chemistry*, 2013.