Supporting Information for

## **Comparison of Two Field-Induced Er(III) Single Ion Magnets**

Irina A. Kühne,<sup>\*a,b</sup> Liviu Ungur,<sup>c</sup> Kane Esien,d<sup>c</sup> Anthony B. Carter,<sup>e,f</sup> John D. Gordon,<sup>b</sup> Cameron Pauly,<sup>a</sup> Helge Müller-Bunz,<sup>a</sup> Solveig Felton,<sup>d</sup> Dominic Zerulla,<sup>b</sup> and Grace G. Morgan<sup>\*a</sup>

### **Table of Contents**

| Table S1. Selected bond lenghts of compound 1 – 4.                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table S2. SHAPE analysis of compound 1 – 4.    2                                                                                                                      |
| Figure S1. Magnetization curves for [ErL1OAc]·EtOH·H2O (2) measured between 0 and 7 T3                                                                                |
| Figure S2. Magnetization curves for [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] (4) measured between 0 and 7 T3                                             |
| Figure S3. In-phase (left) and out-of-phase susceptibility (right) of [ErL <sub>1</sub> OAc]·EtOH·H <sub>2</sub> O (2)3                                               |
| Figure S4. In-phase (left) and out-of-phase susceptibility (right) of [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] (4)4                                      |
| Figure S5. $Ln(\tau)$ versus 1/T for $[ErL_1OAc] \cdot EtOH \cdot H_2O$ (2) (left) and $[ErL_1(CF_3CO_2)]$ (4) (right)4                                               |
| Figure S6. Temperature-dependence of the in-phase (left) and out-of-phase susceptibility (right) of                                                                   |
| $[ErL_1OAc]\cdot EtOH\cdot H_2O$ (2) at 500 Oe at varying frequencies between 1 Hz and 1500 Hz5                                                                       |
| Figure S7. Cole-Cole plot between 1.8 and 4.0 K for [ErL <sub>1</sub> OAc]·EtOH·H <sub>2</sub> O (2) (left) and [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] |
| (4) (right) both measured at 500 Oe5                                                                                                                                  |
| Figure S8. Frequency-dependence of the in-phase (left) and out-of-phase susceptibility (right) at 1500                                                                |
| Oe of [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] (4) in a temperature range between 1.8-4.0 K6                                                             |
| Figure S9. Cole-Cole plot between 1.8 and 3.0 K for $[ErL_1(CF_3CO_2)]$ (4) (left) and a zoom in for                                                                  |
| highlighting the second process (right), measured at 1500 Oe6                                                                                                         |
| Table S3. Resulting parameters of $\tau$ and $\alpha$ obtained with CC-Fit of [ErL <sub>1</sub> OAc]·EtOH·H <sub>2</sub> O (2) at 500 Oe.6                            |
| Table S4. Resulting parameters of $\tau$ and $\alpha$ obtained with CC-Fit of [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] (4) at 500 Oe7                    |
| <b>Table S5</b> . Resulting parameters of $\tau$ and $\alpha$ obtained with CC-Fit of [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] (4) at 1500 Oe7           |
| Figure S10. Solid state diffuse spectral reflectance spectra of Gd containing complexes 1 and 38                                                                      |
| Figure S11. IR spectrum of [Gd(L <sub>1</sub> )(OAc)]·EtOH·H <sub>2</sub> O (1)9                                                                                      |
| Figure S12. IR spectrum of [Er(L <sub>1</sub> )(OAc)]·EtOH·H2O (2)9                                                                                                   |
| Figure S13. Fingerprint-region of the IR spectrum of [Er(L <sub>1</sub> )(OAc)]·EtOH·H <sub>2</sub> O (2)10                                                           |
| Figure S14. IR spectrum of [Gd(L <sub>1</sub> )(CF <sub>3</sub> CO <sub>2</sub> )] (3)10                                                                              |
| Figure S15. Fingerprint-region of the IR spectrum of $[Gd(L_1)(CF_3CO_2)]$ (3)11                                                                                      |
| Figure S16. IR spectrum of [Er(L <sub>1</sub> )(CF <sub>3</sub> CO <sub>2</sub> )] (4)11                                                                              |
| Figure S17. Fingerprint-region of the IR spectrum of $[Er(L_1)(CF_3CO_2)]$ (4)12                                                                                      |
| Figure S18. Solid state Raman spectra of both Er <sup>III</sup> containing complexes 2 (blue) and 4 (green) using a                                                   |
| 532 nm laser excitation                                                                                                                                               |
| Table S6. Selected crystalographic data for 1-4. 12                                                                                                                   |

| Compound    | $[GdL_1(OAc)] \cdot H_2O$<br>·EtOH (1) | $[ErL_1(OAc)] \cdot H_2O$ $\cdot EtOH (2)$ | $[GdL_1(CF_3CO_2)] (3)$        | $[ErL_1(CF_3CO_2)]$ (4)        |
|-------------|----------------------------------------|--------------------------------------------|--------------------------------|--------------------------------|
| sample code | IK153 – mor1197                        | IK273 –<br>mor1276                         | IK218 – mor1214                | IK291 – mor1301                |
| Ln-O(1)     | 2.260(2)                               | 2.210(5)                                   | 2.230(3)                       | 2.1721(17)                     |
| Ln-O(4)     | 2.266(2)                               | 2.210(5)                                   | 2.215(2)                       | 2.1757(18)                     |
| Ln-O(5)     | 2.335(2)                               | 2.286(5)                                   | 2.447(3)                       | 2.3858(19)                     |
| Ln-N(1)     | 2.539(3)                               | 2.494(6)                                   | 2.567(3)                       | 2.522(2)                       |
| Ln-N(2)     | 2.603(2)                               | 2.567(6)                                   | 2.567(5) (A); 2.615(19)<br>(B) | 2.525(4) (A); 2.554(15)<br>(B) |
| Ln-N(3)     | 2.616(3)                               | 2.569(7)                                   | 2.610(3)                       | 2.562(2)                       |
| Ln-N(4)     | 2.567(3)                               | 2.531(6)                                   | 2.598(3)                       | 2.554(2)                       |
| Ln-N(5)     | 2.556(3)                               | 2.517(6)                                   | 2.520(3)                       | 2.483(2)                       |
|             |                                        |                                            |                                |                                |

#### Table S1. Selected bond lenghts of compound 1 - 4.

#### Table S2. SHAPE analysis of compound 1 - 4.

OP-8: Octagon; HPY-8: Heptagonal pyramid; HBPY-8: Hexagonal bipyramid; CU-8: Cube; SAPR-8: Square antiprism; TDD-8: Triangular dodecahedron; JGBF-8: Johnson gyrobifastigium; JETBPY-8: Johnson elongated triangular bipyramid; JBTPR-8: Biaugmented trigonal prism; BTPR-8: Biaugmented trigonal prism; JSD-8: Snub diphenoid; TT-8: Triakis tetrahedron; ETBPY-8: Elongated trigonal bipyramid.

|             | $[GdL_1(OAc)] \cdot H_2O$ $\cdot EtOH (1)$ | [ErL <sub>1</sub> (OAc)]·H <sub>2</sub> O<br>·EtOH ( <b>2</b> ) | $[GdL_1(CF_3CO_2)] (3)$ |        | $[ErL_1(CF_3CO_2)]$ (4) |        |
|-------------|--------------------------------------------|-----------------------------------------------------------------|-------------------------|--------|-------------------------|--------|
| sample code | IK153 – mor1197                            | IK273 – mor1276                                                 | IK218 - mor1214         |        | IK291 – mor1301         |        |
| sample code |                                            |                                                                 | site A                  | site B | site A                  | site B |
| OP-8        | 31.536                                     | 31.105                                                          | 31.121                  | 31.606 | 31.232                  | 31.391 |
| HPY-8       | 22.528                                     | 22.470                                                          | 22.214                  | 22.949 | 23.087                  | 22.784 |
| HBPY-8      | 12.354                                     | 12.901                                                          | 12.776                  | 13.141 | 13.513                  | 13.224 |
| CU-8        | 9.448                                      | 9.966                                                           | 10.588                  | 12.533 | 12.417                  | 10.802 |
| SAPR-8      | 2.369                                      | 2.215                                                           | 2.821                   | 3.460  | 3.114                   | 2.600  |
| TDD-8       | 2.219                                      | 1.987                                                           | 1.715                   | 1.739  | 1.510                   | 1.517  |
| JGBF-8      | 10.001                                     | 10.222                                                          | 9.928                   | 8.549  | 8.940                   | 10.091 |
| JETBPY-8    | 26.610                                     | 27.066                                                          | 26.789                  | 27.085 | 27.086                  | 27.147 |
| JBTPR-8     | 2.264                                      | 2.047                                                           | 2.734                   | 2.972  | 2.733                   | 2.512  |
| BTPR-8      | 1.887                                      | 1.740                                                           | 2.402                   | 2.663  | 2.439                   | 2.247  |
| JSD-8       | 2.659                                      | 2.419                                                           | 2.283                   | 2.257  | 2.029                   | 2.078  |
| TT-8        | 10.166                                     | 10.658                                                          | 11.197                  | 13.005 | 12.870                  | 11.373 |
| ETBPY-8     | 23.201                                     | 23.504                                                          | 24.031                  | 23.525 | 23.934                  | 24.410 |

In case of complex **3** and **4**, one Nitrogen atom of the ligand backbone shows a disorder in the crystal structure, leading to N2A and N2B in the structure, which were treated seperately, leading to site A and site B of the same molecule.



**Figure S1.** Magnetization curves for  $[ErL_1OAc] \cdot EtOH \cdot H_2O$  (2) measured between 0 and 7 T at different temperatures (left) and reduced magnetization (right).



**Figure S2.** Magnetization curves for  $[ErL_1(CF_3CO_2)]$  (4) measured between 0 and 7 T at different temperatures (left) and reduced magnetization (right).



Figure S3. In-phase (left) and out-of-phase susceptibility (right) of  $[ErL_1OAc]$ ·EtOH·H<sub>2</sub>O (2) at varying field between 0 Oe and 3000 Oe.



Figure S4. In-phase (left) and out-of-phase susceptibility (right) of  $[ErL_1(CF_3CO_2)]$  (4) at varying field between 0 Oe and 3000 Oe.



**Figure S5**.  $Ln(\tau)$  versus 1/T for  $[ErL_1OAc] \cdot EtOH \cdot H_2O(2)$  (left) and  $[ErL_1(CF_3CO_2)]$  (4) (right) with the  $\tau$ -values obtained by the out-of-phase maxima (purple circles) or the Cole-Cole fit (red triangles) and the Arrhenius fit as dashed pink line.



**Figure S6**. Temperature-dependence of the in-phase (left) and out-of-phase susceptibility (right) of  $[ErL_1OAc] \cdot EtOH \cdot H_2O$  (**2**) at 500 Oe at varying frequencies between 1 Hz and 1500 Hz.



**Figure S7**. Cole-Cole plot between 1.8 and 4.0 K for  $[ErL_1OAc] \cdot EtOH \cdot H_2O$  (2) (left) and  $[ErL_1(CF_3CO_2)]$  (4) (right) both measured at 500 Oe.

Solid lines are fits of the experimental data using CC-Fit which uses a generalized Debye model.



**Figure S8**. Frequency-dependence of the in-phase (left) and out-of-phase susceptibility (right) at 1500 Oe of  $[ErL_1(CF_3CO_2)]$  (4) in a temperature range between 1.8-4.0 K (solid line represents the best fit obtained using CC-Fit which uses a generalized Debye model).



**Figure S9**. Cole-Cole plot between 1.8 and 3.0 K for  $[ErL_1(CF_3CO_2)]$  (4) (left) and a zoom in for highlighting the second process (right), measured at 1500 Oe. Solid lines are fits of the experimental data using CC-Fit which uses a generalized Debye model.

**Table S3**. Resulting parameters of  $\tau$  and  $\alpha$  obtained with CC-Fit of [ErL<sub>1</sub>OAc]·EtOH·H<sub>2</sub>O (**2**) at 500 Oe.

| ******                            |                     |             |  |  |  |  |  |  |
|-----------------------------------|---------------------|-------------|--|--|--|--|--|--|
| ##########                        | CC-FIT              | ########### |  |  |  |  |  |  |
| ##########                        |                     | ########### |  |  |  |  |  |  |
| ##########                        | (C) 2014            | ##########  |  |  |  |  |  |  |
| ##########                        | NICHOLAS F CHILTON  | ########### |  |  |  |  |  |  |
| ##########                        |                     | ##########  |  |  |  |  |  |  |
| ##########                        | nfchilton@gmail.com | ########### |  |  |  |  |  |  |
| ****                              |                     |             |  |  |  |  |  |  |
| Number of relaxation processes: 1 |                     |             |  |  |  |  |  |  |
| Number of temperatures: 10        |                     |             |  |  |  |  |  |  |

Number of frequencies: 30

| Т(К) | ChiS         | ChiT         | Tau          | Alpha        | Residual     |
|------|--------------|--------------|--------------|--------------|--------------|
| 1.8  | 0.138537E+01 | 0.407440E+01 | 0.153934E-01 | 0.156145E+00 | 0.597438E+00 |
| 2.0  | 0.132008E+01 | 0.455639E+01 | 0.105085E-01 | 0.120006E+00 | 0.161903E+00 |
| 2.2  | 0.127001E+01 | 0.466585E+01 | 0.732078E-02 | 0.100385E+00 | 0.988388E-01 |
| 2.4  | 0.116658E+01 | 0.473288E+01 | 0.462661E-02 | 0.107296E+00 | 0.135827E+00 |
| 2.6  | 0.110091E+01 | 0.467104E+01 | 0.264654E-02 | 0.955942E-01 | 0.106966E+00 |
| 2.8  | 0.104253E+01 | 0.457059E+01 | 0.163797E-02 | 0.848873E-01 | 0.934458E-01 |
| 3.0  | 0.995977E+00 | 0.443510E+01 | 0.101304E-02 | 0.727326E-01 | 0.558754E-01 |
| 3.2  | 0.956147E+00 | 0.427235E+01 | 0.617049E-03 | 0.595186E-01 | 0.320502E-01 |
| 3.5  | 0.903400E+00 | 0.402144E+01 | 0.281435E-03 | 0.435620E-01 | 0.121025E-01 |
| 4.0  | 0.872766E+00 | 0.358642E+01 | 0.734646E-04 | 0.175601E-01 | 0.295716E-02 |
|      |              |              |              |              |              |

**Table S4**. Resulting parameters of  $\tau$  and  $\alpha$  obtained with CC-Fit of  $[ErL_1(CF_3CO_2)]$  (4) at 500 Oe.

| ################    | #######   | * # # # # # # # # # # # # # # # # | *#########              |
|---------------------|-----------|-----------------------------------|-------------------------|
| #########           | CC-       | -FIT                              | ##########              |
| # # # # # # # # #   |           |                                   | ##########              |
| #########           | (C)       | 2014                              | ##########              |
| ########            | NICHOLAS  | F CHILTON                         | ##########              |
| # # # # # # # # # # |           |                                   | ##########              |
| ######### n:        | fchilton( | gmail.com                         | ##########              |
| ################    | #######   | * # # # # # # # # # # # # # # #   | + # # # # # # # # # # # |
| Number of relaxat   | tion prod | cesses: 1                         |                         |
| Number of tempera   | atures:   | 9                                 |                         |
| Number of frequen   | ncies: 3  | 30                                |                         |

| Т(К) | ChiS         | ChiT         | Tau          | Alpha        | Residual     |
|------|--------------|--------------|--------------|--------------|--------------|
| 1.8  | 0.152352E+01 | 0.408185E+01 | 0.405303E-02 | 0.780620E-01 | 0.178985E+00 |
| 2.0  | 0.141577E+01 | 0.476605E+01 | 0.389407E-02 | 0.711197E-01 | 0.892546E-01 |
| 2.2  | 0.133404E+01 | 0.510102E+01 | 0.322102E-02 | 0.543167E-01 | 0.501062E-01 |
| 2.4  | 0.125393E+01 | 0.528488E+01 | 0.224146E-02 | 0.324655E-01 | 0.280252E-01 |
| 2.6  | 0.115745E+01 | 0.534986E+01 | 0.143719E-02 | 0.373360E-01 | 0.188724E+00 |
| 2.8  | 0.102586E+01 | 0.538030E+01 | 0.849892E-03 | 0.626908E-01 | 0.444317E+00 |
| 3.0  | 0.946529E+00 | 0.520089E+01 | 0.454991E-03 | 0.559672E-01 | 0.230059E+00 |
| 3.2  | 0.878609E+00 | 0.494047E+01 | 0.232787E-03 | 0.458088E-01 | 0.107465E+00 |

#### 3.5 0.780403E+00 0.456055E+01 0.821507E-04 0.378735E-01 0.352503E-01

# **Table S5**. Resulting parameters of $\tau$ and $\alpha$ obtained with CC-Fit of [ErL<sub>1</sub>(CF<sub>3</sub>CO<sub>2</sub>)] (4) at 1500 Oe.

########## CC-FIT ########## ########## ########## ########## (C) 2014 ########## NICHOLAS F CHILTON ########## ########## ########## ########## ########## nfchilton@gmail.com ########## \*\*\*\*\*\* Number of relaxation processes: 2

Number of temperatures: 10 Number of frequencies: 30

| ChiS(total)  | dChi1        | Tau1         | Alpha1       | dChi2        | Tau2         | Alpha2       | Residual     |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 0.121552E+00 | 0.802396E+00 | 0.240242E-03 | 0.124321E+00 | 0.506201E+00 | 0.691765E+00 | 0.685631E-01 | 0.309490E-02 |
| 0.145508E+00 | 0.104865E+01 | 0.301518E-03 | 0.559929E-01 | 0.308152E+01 | 0.410188E+01 | 0.136626E+00 | 0.327212E-02 |
| 0.153220E+00 | 0.133001E+01 | 0.346978E-03 | 0.361235E-01 | 0.313065E+01 | 0.386629E+01 | 0.149002E+00 | 0.320113E-02 |
| 0.143786E+00 | 0.175388E+01 | 0.380674E-03 | 0.295963E-01 | 0.100455E+01 | 0.821577E+00 | 0.727833E-01 | 0.890329E-02 |
| 0.123744E+00 | 0.217740E+01 | 0.361923E-03 | 0.314682E-01 | 0.720291E+00 | 0.587357E+00 | 0.632583E-01 | 0.115481E-01 |
| 0.115085E+00 | 0.255273E+01 | 0.299180E-03 | 0.232331E-01 | 0.505615E+00 | 0.431956E+00 | 0.621315E-01 | 0.659930E-02 |
| 0.823903E-01 | 0.289695E+01 | 0.214880E-03 | 0.226389E-01 | 0.458705E+00 | 0.514632E+00 | 0.103989E+00 | 0.185449E-01 |
| 0.212276E-15 | 0.321656E+01 | 0.136935E-03 | 0.401018E-01 | 0.368568E+00 | 0.531902E+00 | 0.856994E-01 | 0.276395E-01 |
| 0.352405E-15 | 0.341471E+01 | 0.644790E-04 | 0.285304E-01 | 0.416326E+00 | 0.111599E+01 | 0.105482E+00 | 0.827524E-02 |
| 0.921607E-15 | 0.345200E+01 | 0.165057E-04 | 0.288412E-01 | 0.113401E+00 | 0.318362E+00 | 0.489844E-12 | 0.463239E-02 |



Figure S10. Solid state diffuse spectral reflectance spectra of Gd containing complexes 1 and 3.



**Figure S11**. IR spectrum of  $[Gd(L_1)(OAc)]$ ·EtOH·H<sub>2</sub>O (**1**).



**Figure S12**. IR spectrum of  $[Er(L_1)(OAc)]$ ·EtOH·H2O (**2**).



**Figure S13**. Fingerprint-region of the IR spectrum of  $[Er(L_1)(OAc)]$ ·EtOH·H<sub>2</sub>O (2).



Figure S14. IR spectrum of  $[Gd(L_1)(CF_3CO_2)]$  (3).



Figure S15. Fingerprint-region of the IR spectrum of  $[Gd(L_1)(CF_3CO_2)]$  (3).



Figure S16. IR spectrum of  $[Er(L_1)(CF_3CO_2)]$  (4).



Figure S17. Fingerprint-region of the IR spectrum of [Er(L<sub>1</sub>)(CF<sub>3</sub>CO<sub>2</sub>)] (4).



**Figure S18**. Solid state Raman spectra of both Er<sup>III</sup> containing complexes **2** (blue) and **4** (green) using a 532 nm laser excitation.

| Compound          | $[GdL_1(OAc)] \cdot EtOH$ $\cdot H_2O 1$ | $[ErL_1(OAc)] \cdot EtOH \cdot H_2O 2$ | [GdL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] <b>3</b> | [ErL <sub>1</sub> (CF <sub>3</sub> CO <sub>2</sub> )] <b>4</b> |
|-------------------|------------------------------------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| sample code       | IK153 – mor1197                          | IK273 – mor1276                        | IK218 - mor1214                                                | IK291 – mor1301                                                |
| Empirical formula | $C_{30}H_{48}N_5O_8Gd \\$                | $C_{30}H_{48}N_5O_8Er$                 | $C_{28}H_{37}N_5O_6F_3Gd$                                      | $C_{28}H_{37}N_5O_6F_3Er$                                      |
| Formula weight    | 763.98                                   | 773.99                                 | 753.87                                                         | 763.88                                                         |
| Crystal system    | orthorhombic                             | orthorhombic                           | monoclinic                                                     | monoclinic                                                     |

#### Table S6. Selected crystalographic data for 1-4.

| Space group                             | $P2_{1}2_{1}2_{1}$                   | $P2_{1}2_{1}2_{1}$                   | $P2_l/c$                             | $P2_{l}/c$                           |
|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Crystal size (nm)                       | 0.217 x 0.217 x<br>0.197             | 0.362 x 0.251 x<br>0.187             | 0.239 x 0.114 x<br>0.037             | 0.310 x 0.222 x<br>0.069             |
| <i>a</i> (Å)                            | 10.5109(2)                           | 10.6073(3)                           | 12.7436(2)                           | 12.9038(2)                           |
| <i>b</i> (Å)                            | 15.1977(2)                           | 15.3338(4)                           | 16.4518(3)                           | 16.5260(2)                           |
| <i>c</i> (Å)                            | 20.4077(3)                           | 20.4350(5)                           | 14.9252(2)                           | 14.9360(2)                           |
| α(°)                                    | 90                                   | 90                                   | 90                                   | 90                                   |
| $\beta(^{\circ})$                       | 90                                   | 90                                   | 105.429(2)                           | 106.172(2)                           |
| $\gamma(^{\circ})$                      | 90                                   | 90                                   | 90                                   | 90                                   |
| V (Å <sup>3</sup> )                     | 3259.96(9)                           | 3323.76(15)                          | 3016.37(9)                           | 3059.04(8)                           |
| Ζ                                       | 4                                    | 4                                    | 4                                    | 4                                    |
| d <sub>calc</sub> (g cm <sup>-3</sup> ) | 1.557                                | 1.547                                | 1.660                                | 1.659                                |
| <i>T</i> (K)                            | 100(2)                               | 293(2)                               | 100(2)                               | 190(2)                               |
| $\mu$ (mm <sup>-1</sup> )               | 2.090                                | 2.579                                | 14.816                               | 2.810                                |
| F(000)                                  | 1564                                 | 1580                                 | 1516                                 | 1532                                 |
| Limiting indices                        | $h = \pm 15, k = \pm 23, 1 = \pm 31$ | $h = \pm 13, k = \pm 19, l = \pm 25$ | $h = \pm 16, k = \pm 20, l = \pm 18$ | $h = \pm 18, k = \pm 23, 1 = \pm 21$ |
| Reflections collected / unique          | 75174 / 11556                        | 20346 / 7128                         | 17024 / 6293                         | 49974 / 8946                         |
| R(int)                                  | 0.0520                               | 0.0493                               | 0.0316                               | 0.0301                               |
| Completeness to $\Theta$ (%)            | 99.7                                 | 99.6                                 | 100.0                                | 99.8                                 |
| Data / restraints / parameters          | 11556 / 0 / 405                      | 7128 / 0 / 405                       | 6293 / 0 / 399                       | 8946 / 0 / 425                       |
| GooF on F <sup>2</sup>                  | 1.052                                | 1.041                                | 1.060                                | 1.073                                |
| Final R indices $[I > 2\sigma(I)]^a$    | $R_1 = 0.0266,$<br>$wR_2 = 0.0440$   | $R_1 = 0.0379,$<br>$wR_2 = 0.0851$   | $R_1 = 0.0359,$<br>w $R_2 = 0.0892$  | $R_1 = 0.0263,$<br>$wR_2 = 0.0541$   |
| R indices (all data)                    | $R_1 = 0.0335,$<br>$wR_2 = 0.0466$   | $R_1 = 0.0438,$<br>$wR_2 = 0.0909$   | $R_1 = 0.0404,$<br>$wR_2 = 0.0925$   | $R_1 = 0.0337,$<br>$wR_2 = 0.0574$   |
| Largest diff. peak/hole (e·Å-3)         | 0.859 and -0.624                     | 1.123 and -0.504                     | 1.115 and -1.083                     | 1.050 and -0.786                     |
| CCDC no.                                | 1916223                              | 1916225                              | 1916224                              | 1916226                              |