New V^{IV}O-complexes for oxidative desulfurization of refractory sulfur compounds in fuel: synthesis, structure, reactivity trend and mechanistic studies

Tendai O. Dembaremba,^{a,*} Isabel Correia,^b Eric C. Hosten,^a Maxim L. Kuznetsov,^b Wilhelmus J. Gerber,^{c,*} João C. Pessoa^{b,*} Adeniyi S. Ogunlaja,^a and Zenixole R. Tshentu ^{a,*}

*Corresponding authors

^a Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port-Elizabeth 6031, South Africa.

Emails: olsentodds@gmail.com (T.O.D.) and zenixole.tshentu@mandela.ac.za (Z.R.T.)

Tel: +27 415 042 074

^b Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Email: joao.pessoa@ist.utl.pt

Tel: +351 218 419 268

^c Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, Western Cape, South Africa.

Email: wgerber@sun.ac.za

Tel: +27 218 082 699

Supplementary information

1. Synthesis methods

1.1. Preparation of the ligands

The ligand precursors; HPIMX, X = -H, -Br, -OMe and -NO₂, were prepared by modifying a procedure reported in literature by Gerber *et al.*⁵⁸ for related substituted imidazoles. 0.02 mol. of starting material [3.7 g salicyaldehyde for 2'-(2-hydroxyphenyl)imidazole (HPIMH), 4.0 g 5-bromosalicyaldehyde for 2'-(2-hydroxy-5-bromophenyl)imidazole (HPIMBr), 3.0 g 2-hydroxy-5-methoxybenzaldehyde for 2'-(2-hydroxy-5-methoxyphenyl)imidazole (HPIMMeO) and 3.3 g 2-hydroxy-5-nitrobenzaldehyde for 2'-(2-hydroxy-5-nitrophenyl)imidazole (HPIMMO₂)] in 25 mL ethanol (except in the case of HPIMNO₂ where DMSO was used) was mixed with 5.0 mL of a 40 % aqueous glyoxal solution at 0°C. 10.0 mL of an ice-cold 25 % aqueous ammonia solution was added and stirred for 30 minutes at 0 °C. The yellow-brown mixtures were then stirred overnight at room temperature. For HPIMBr and HPIMNO₂ the precipitate formed was filtered off and washed with water. For HPIMH and HPIMMeO, ethanol was removed using a rotary evaporator and the ligands were extracted from the residue several times using 20 mL aliquots of diethyl ether. The diethyl ether was then removed using a rotary evaporator and the oil obtained was recrystallized from ethyl acetate to afford pure crystals of the ligands.

(a) 2'-(2-Hydroxyphenyl)imidazole (HPIMH)

Yield: 72%. FT-IR: 1554 cm⁻¹, v (C=N) and 1264 cm⁻¹, phenolic v (C-O). 1H NMR (300 MHz, CDCl3) δ 7.75 (s, 1H), 7.63 (d, 1H), 7.24 (t, 1H), 7.12 (s, 2H), 7.07 (d, 1H), 6.86 (t, 1H), 5.73 (s,

1H). CHNS Analysis, expected (found) for C₉H₈N₂O (%): C, 67.49 (67.43); H, 5.03 (5.07); N, 17.49 (17.51).

(b) 2'-(2-Hydroxy-5-bromophenyl)imidazole (HPIMBr)

Yield: 83%. FT-IR: 1528 cm⁻¹, v (C=N) and 1248 cm⁻¹, phenolic v (C-O). 1H NMR (300 MHz, DMSO) δ 12.44 (s, 1H), 8.09 (s, 1H), 7.37 (dd, 1H), 7.28 (s, 2H), 7.07 (s, 1H), 6.91 (d, 1H). CHNS Analysis, expected (found) for C₉H₇BrN₂O (%): C, 45.22 (45.26); H, 2.95 (2.91); N, 11.72 (11.75).

(c) 2'-(2-Hydroxy-5-methoxyphenyl)imidazole (HPIMMeO)

Yield: 63%. FT-IR: 1532 cm⁻¹, v (C=N) and 1219 cm⁻¹, phenolic v (C-O). 1H NMR (300 MHz, CDCl3) δ 7.19 (s, 1H), 7.08 (s, 1H), 7.05 (s, 1H), 7.02 (s, 2H), 6.91 (s, 1H), 6.89 (s, 1H), 6.75 (d, 2H), 3.63 (s, 3H). CHNS Analysis, expected (found) for C₁₀H₁₀N₂O₂ (%): C, 63.15 (63.19); H, 5.30 (5.33); N, 14.73 (14.78).

(d) 2'-(2-Hydroxy-5-nitrophenyl)imidazole (HPIMNO₂)

Yield: 88%. FT-IR: 1560 cm⁻¹, v (C=N) and 1300 cm⁻¹, phenolic v (C-O). 1H NMR (300 MHz, DMSO) δ 13.88 (s, 1H), 8.93 (s, 1H), 8.11 (d, 1H), 7.35 (s, 2H), 7.07 (d, 1H). CHNS Analysis, expected (found) for C₉H₇N₃O₃ (%): C, 52.69 (52.72); H, 3.44 (3.43); N, 20.48 (20.46).

1.2. Preparation of complexes

Complexes were prepared from their ligand precursors adapting literature techniques used for similar *bis*-coordinated complexes.⁵⁹ To a solution of each ligand precursor in methanol (except in the case of HPIMNO₂ where DMSO was used) a solution of two-fold molar quantity of

V^{IV}OSO₄ in water was added. Precipitates were formed immediately. These were filtered off and washed with a methanolic solution and allowed to dry to yield their respective complexes.

(a) Oxidovanadium(IV)-2'-(2-hydroxyphenyl)imidazole [V^{IV}O(PIMH)₂]

Yield: 62%. FT- IR (v, cm⁻¹): 1563, v(C=N); 1148, v(C-O); 964, v(V=O); 446, v(V-N) and 409, v(V-O). CHNS Analysis, expected (found) for C₁₈H₁₄N₄O₃V (%): C, 56.26 (56.21); H, 3.41 (3.45); N, 14.58 (14.52).

(b) Oxidovanadium(IV)-2'-(2-hydroxyphenyl)imidazole [V^{IV}O(PIMMeO)₂]

Yield: 56%. FT- IR (v, cm⁻¹): 1570, v(C=N); 1099, v(C-O); 944, v(V=O); 466, v(V-N) and 430, v(V-O). CHNS Analysis, expected (found) for C₂₀H₁₈N₄O₅V (%): C, 54.06 (53.98); H, 3.86 (3.87); N, 12.61 (12.58).

(c) Oxidovanadium(IV)-2'-(2-hydroxyphenyl)imidazole [V^{IV}O(PIMBr)₂]

Yield: 69%. FT- IR (v, cm⁻¹): 1563, v(C=N); 1107, v(C-O); 973, v(V=O); 464, v(V-N) and 421, v(V-O). CHNS Analysis, expected (found) for $C_{18}H_{12}Br_2N_4O_3V$ (%): C, 39.88 (39.84); H, 2.05 (2.07); N, 10.34 (10.32).

(d) Oxidovanadium(IV)-2'-(2-hydroxyphenyl)imidazole [V^{IV}O(PIMNO₂)₂]

Yield: 76%. FT- IR (v, cm⁻¹): 1560, v(C=N); 1148, v(C-O); 992, v(V=O); 482, v(V-N) and 421, v(V-O). CHNS Analysis, expected (found) for C₁₈H₁₂N₆O₇V (%): C, 45.59 (45.59); H, 2.34 (2.40); N, 17.72 (17.68).

2. Computational details

The entropic term in solution (S_s) was calculated according to the procedure described by Wertz⁶⁷ and Cooper and Ziegler⁶⁸ using **Equations 1** to **6**:

$$\Delta S_{1} = R \ln V^{s}_{m,liq} / V_{m,gas}$$
⁽¹⁾

$$\Delta S_2 = R \ln V_m^{\Box} / V_{m,liq}^{s}$$
⁽²⁾

$$\alpha = \frac{S^{\Box_{s_{\text{liq}}}} - (S^{\Box_{s_{\text{gas}}}} + R \ln V_{m,\text{liq}}^{s}/V_{m,\text{gas}})}{(S^{\Box_{s_{\text{gas}}}} + R \ln V_{m,\text{liq}}^{s}/V_{m,\text{gas}})}$$
(3)

$$S_s = S_g + \otimes S_{sol} = S_g + [\otimes S_1 + \langle (S_g + \otimes S_1) + \otimes S_2] =$$

$$S_g + [(-12.72 \text{ cal/mol} \cdot K) - 0.32(S_g - 12.72 \text{ cal/mol} \cdot K) + 6.37 \text{ cal/mol} \cdot K]$$
 (CH₃OH) (4)

$$S_g + [(-12.21 \text{ cal/mol} \cdot K) - 0.23(S_g - 12.21 \text{ cal/mol} \cdot K) + 5.87 \text{ cal/mol} \cdot K]$$
 (CH₃CN) (5)

$$S_g + [(-10.16 \text{ cal/mol} \cdot K) - 0.15(S_g - 10.16 \text{ cal/mol} \cdot K) + 3.81 \text{ cal/mol} \cdot K]$$
 (heptane) (6)

where S_g is the gas-phase entropy of the solute, ΔS_{sol} is the solvation entropy, $S^{\circ,s}_{liq}$, $S^{\circ,s}_{gas}$ and $V^s_{m,liq}$ are the standard entropies and molar volumes of the solvent in the liquid or gas phases (127.2/149.6/328.57 and 239.9/245.5/427.98 J/mol·K and 40.46/52.16/146.51 mL/mol, respectively, for methanol/acetonitrile/heptane), $V_{m,gas}$ is the molar volume of the ideal gas at 25 °C (24450 mL/mol), V°_m is the molar volume of the solution that correspond to the standard conditions (1000 mL/mol). The enthalpies and Gibbs free energies in solution (H_s and G_s, respectively) were estimated using the **Equations 7** and **8**:

$$H_{s} = E_{s}(6-311+G^{*}) + H_{g}(6-31G^{*}) - E_{g}(6-31G^{*})$$
(7)

5

$$G_s = H_s - TS_s \tag{8}$$

where E_s and E_g are the total energies in solution and the gas phase and H_g is the gas-phase enthalpy calculated at the corresponding level.

Figure S1. ¹H NMR of 2'-(2-hydroxyphenyl)imidazole (HPIMH).

Figure S2. ¹H NMR of 2'-(2-hydroxy-5-methoxyphenyl)imidazole (HPIMMeO).

Figure S3. ¹H NMR of 2'-(2-hydroxy-5-bromophenyl)imidazole (HPIMBr).

Figure S4. ¹H NMR of 2'-(2-hydroxy-5-nitrophenyl)imidazole (HPIMNO₂).

Figure S5. FT-IR spectra of HPIMH and its complex [V^{IV}O(PIMH)₂].

Figure S6. FT-IR spectra of HPIMMeO and its complex [V^{IV}O(PIMMeO)₂].

Figure S7. FT-IR spectra of HPIMBr and its complex [V^{IV}O(PIMBr)₂].

Figure S8. FT-IR spectra of HPIMNO₂ and its complex $[V^{IV}O(PIMNO_2)_2]$.

Table S1. FT-IF	R tentative assign	ments for import	ant bands in the	e oxidovanadium(l	V) complexes.
-----------------	--------------------	------------------	------------------	-------------------	---------------

Compound	Wavenumbers (cm ⁻¹)					
	v(C=N)	v(C-O)	v(V=O)	ν(V-N)	v(V-O)	
[V ^{IV} O(PIMH) ₂]	1563	1148	964	446	409	
[V ^{IV} O(PIMMeO) ₂]	1570	1099	944	466	430	
[V ^{IV} O(PIMBr) ₂]	1563	1107	973	464	421	
[V ^{IV} O(PIMNO ₂) ₂]	1560	1148	992	482	421	

Figure S9. UV-Vis spectrum of $[V^{IV}O(PIMH)_2]$. The insert is an enlargement of the d-d transition region.

Figure S10. UV-Vis spectra of $[V^{IV}O(PIMH)_2]$, $[V^{IV}O(PIMMeO)_2]$, $[V^{IV}O(PIMBr)_2]$ and $[V^{IV}O(PIMNO_2)_2]$ showing the charge transfer bands.

Figure S11. Changes in the EPR spectrum; (a) $0.100 \text{ M} [V^{IV}O(\text{PIMH})_2]$ in DMF, (b and c) upon addition of 3 times mole eq. 0.526 M *t*-BuOOH and (d) overnight after adding DBT.

Scheme S1. Two plausible complexes that may form upon dissolving $[V^{IV}O(PIMH)_2]$ in MeOH. The one shown on the left, $[V^{IV}O(PIMH)_2]^{EQ}$, is significantly more stable; the DFT calculated ΔG° value for the reaction in MeOH being +11.4 kcal·mol⁻¹.

Table S2. Selected crystal data for $[V^{IV}O(PIMH)_2]$, $[V^{V}O(PIMH)(PIMH_2)]$, $[V^{IV}O(PIMBr)_2]$ and $[V^{IV}O(PIMNO_2)_2]$.

Compound	[V ^{IV} O(PIMH) ₂]	[V ^V O(PIMH)(PIMH ₂)]	[V ^{IV} O(PIMBr) ₂]	[V ^{IV} O(PIMNO ₂) ₂]
Empirical formula	$\frac{C_{18}H_{14}N_4O_3V}{2(C_2H_6OS)}$	$C_{18}H_{15}N_4O_4V$	$\frac{C_{18}H_{12}Br_2N_4O_3V}{2(C_2H_6OS)}$	C ₁₈ H ₁₂ N ₆ O ₇ V (C ₂ H ₆ OS)
Formula	541.53	402.28	699.33	553.40
Crystal	dark blue-green	yellow	dark blue-green	dark blue-green
Crystal	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	P21/c (No. 14)	P212121 (No. 19)	P212121 (No. 19)	P21/c (No. 14)
Temp. (K)	200	200	200	200
a, b, c (Å)	15.8192(9) 10.5686(6) 14.8615(8)	7.2579(3) 13.8117(5) 16.2980(6)	15.3157(7) 15.8806(8) 22.1939(13)	13.8817(5) 13.0525(5) 13.1235(5)
$\alpha, \gamma, \beta (^{0})$	90, 94.964(2), 90	90, 90, 90	90, 90, 90	90, 108.646(2), 90
V (Å ³)	2475.3(2)	1633.78(11)	5398.1(5)	2253.05(15)
Ζ	4	4	8	4
$\rho_{\rm calc}$ (g/cm3)	1.453	1.635	1.721	1.632
Radiation	0.71073	0.71073	0.71073	0.71073
Total	43888	15488	56689	26442
Unique reflections	6170	4064	13338	5606
R, wR2, S	0.0369, 0.1025, 1.07	0.0284, 0.0758, 1.06	0.0453, 0.1212, 1.04	0.0447, 0.1286, 1.06
*CCDC	1908640	1908641	1908642	1908643

*CCDC 1908640-1908643 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

Table S3. Selected bond lengths (\AA) and angles $(^{\circ})$ for $[V^{IV}O(PIMH)_2]$,

 $[V^VO_2(PIMH)(PIMH_2)], [V^{IV}O(PIMBr)_2] \text{ and } [V^{IV}O(PIMNO_2)_2].$

[V ^{IV} O(PIMH) ₂]		[V ^V O ₂ (PIMH)	(PIMH ₂)]	[V ^{IV} O(PIMBr) ₂] [V ^{IV} O(PI		[V ^{IV} O(PIM]	$NO_2)_2$
V(1)-O(1)	1.6101(13)	V(1)-O(1)	1.636(2)	V(1)-O(1)	1.594(5)	V(1)-O(3)	1.6143(18)
V(1)-O(2)	1.9141(13)	V(1)-O(2)	1.635(2)	V(1)-O(11)	1.917(4)	V(1)-O(11)	1.908(2)
V(1)-O(3)	1.9023(12)	V(1)-O(11)	1.949(2)	V(1)-O(21)	1.920(3)	V(1)-O(21)	1.9126(18)
V(1)-N(21)	2.0620(15)	V(1)-O(21)	1.9608(17)	V(1)-N(11)	2.075(5)	V(1)-N(11)	2.0586(19)
V(1)-N(31)	2.0617(15)	V(1)-N(22)	2.084(2)	V(1)-N(21)	2.064(5)	V(1)-N(21)	2.0639(19)
O(1)-V(1)-O(2)	109.90(6)	O(1)-V(1)-O(2)	106.71(11)	O(1)-V(1)-O(11)	109.11(19)	O(3)-V(1)-O(11)	108.63(10)
O(1)-V(1)-O(3)	113.16(6)	O(1)-V(1)-O(11)	102.51(9)	O(1)-V(1)-O(21)	112.2(2)	O(3)-V(1)-O(21)	108.95(9)
O(1)-V(1)-N(21)	103.26(6)	O(1)-V(1)-O(21)	111.35(9)	O(1)-V(1)-N(11)	100.5(2)	O(3)-V(1)-N(11)	105.65(8)
O(1)-V(1)-N(31)	104.39(6)	O(1)-V(1)-N(22)	97.91(9)	O(1)-V(1)-N(21)	101.0(2)	O(3)-V(1)-N(21)	103.07(8)
O(2)-V(1)-O(3)	136.92(6)	O(2)-V(1)-O(21)	141.58(10)	O(11)-V(1)-O(21)	138.69(16)	O(11)-V(1)-O(21)	142.41(8)
N(21)-V(1)-N(31)	152.35(6)	O(11)-V(1)-N(22)	155.00(8)	N(11)-V(1)-N(21)	158.46(19)	N(11)-V(1)-N(21)	151.29(8)
Average ligand	85.22 ⁰	Ligand bite angle	80.86 ⁰	Average ligand	86.00 ⁰	Average ligand	85.90 ⁰
bite angle				bite angle		bite angle	

14

Figure S12. Comparing the activity of PIMH in acetonitrile, heptane and heptane/toluene (80:20). Conditions used 100 mg (0.543 mmol) of DBT, 2.0 mL (10.5 mmol) of t-BuOOH and 6.5 μ mol of pre-catalyst in 10 mL of solvent at 60°C.

Species proposed	Predicted masses (m/z)	Observed masses (m/z)	Comments
	ESI-MS(-): 384.04 385.05 386.05	ESI-MS(-): 384.15 385.2 386.2	Figure S13A-D (below). [V ^{IV} O(PIMH) ₂] ⁻ : the initial complex without an H-atom.
	385.05 386.05 387.06	385.13 386.14 387.17	Figure S14B (below). [V ^V O(PIMH) ₂] ⁺ : the initial complex but with V(V) instead of V(IV).
$HN \rightarrow N (M) \rightarrow O H \rightarrow O H$	m/z = 514.03 = 257.02	257.04	Figure S13B (below). Dimeric complex with two CH_3O^- ligands.
$\begin{array}{c} HN & CH_3 \\ HN & I \\ N & V \\ O \\ O \\ CH_3OH \end{array} \\ \begin{array}{c} CH_3 \\ O \\ \\ O \\ O \\ O \\ CH_3 \\ O \\ $	546.05 547.06 548.06	545.52 (Fig. S13F) 545.47; 546.54; 547.5 (Fig. ESI- 3B)	One possible assignment of the peaks at $m/z = \sim 545.5$ in CH ₃ CN and also observed in methanol.
	545.11 546.12 547.12	545.47 546.54 547.5 (Fig. ESI- 3)	Figures S13F and S14(below) Another possible assignment of the peaks at $m/z = -545.55$ in CH ₃ CN and also observed in methanol.

Table S4. Vanadium species observed by ESI(+)-MS ^a Compound $[V^{IV}O(PIMH)_2]$ dissolved in methanol except when stated otherwise.

	705.18 706.18 707.18	705.79 706.83 707.8	Figures S14 and S15A, B (below) One possible assignment of the peaks at $m/z = 705.2$
$H^{+} CH_{3}OH$ $HN O$ $N H$ $HN O$ O $HN O$ O $HN O$ O O O O O O O O O	450.11 451.11 452.12	450.11 452.1 453.1	Figures S14 and S15A, B (below). [V ^{IV} O(PIMH) ₂], with two MeOH and one moiety protonated.
$ \begin{array}{c} C_4H_9 \\ HN \\ HN \\ HN \\ N \\ HN \\ $	626.08 627.08 629.08	626.49 627.5 628.5	Figures S14 and S15A, B (below). Dinuclear mixed-valence complex with two bridging CH ₃ O ⁻ and one t-BuOO ⁻ ligands. Very tentative assignment.
H H H H H CH ₃ OH	691.18 692.18 693.19	691.43 Very low relative intensity	Figure S15C (below). Very tentative assignment of a species including [V ^{IV} O(PIMH) ₂ (t-BuOO)] ⁺ and a DBT molecule somewhere interacting with it. The MeOH may be coordinated to V(V) or not.
Or, e.g. C_4H_9 HO			Note that the m/z values of radical species corresponding to these structures, such as c-DBT• in Scheme 2, do not differ from the m/z values of these species.

^a Only the 1st row corresponds to ESI-MS(-).

Figure S13A. [V^{IV}O(PIMH)₂] in methanol after 48 h of dissolution.

Figure S13B. ESI-MS(-) of [V^{IV}O(PIMH)₂] in methanol a few minutes after dissolution (peak at m/z = 384.16).

Fig. S13C. ESI-MS(+) $[V^{IV}O(PIMH)_2]$ in methanol after 48 h dissolution (peak at m/z = 385.13).

Fig. S13D. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in methanol after 48 h dissolution (peak at m/z = 385.13).

Fig. S13E. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in methanol a few minutes after dissolution (peak at m/z = 257.04).

Fig. S13F. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in methanol a few minutes after dissolution (peak at m/z = 545.48).

Fig. 14A. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in CH₃CN after 48 h dissolution (peak at m/z = 545.52).

Fig. S14B. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in CH₃CN after 48 h dissolution (peak at m/z = 545.47).

Fig. S15A. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in methanol after adding 1 equivalent of t-BuOOH (several peaks emphasized).

Fig. S15B. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in methanol after adding 2 equivalents of t-BuOOH (several peaks emphasized).

Fig. S15C. ESI-MS(+) of $[V^{IV}O(PIMH)_2]$ in methanol after adding 2 equivalents of t-BuOOH and 2 equivalents of dibenzothiophenes (DBT) (several peaks emphasized, namely the one at m/z = 691.43).

Figure S16. ⁵¹V NMR spectra of $NH_4V^VO_3$ in MeOD-d₄ (7.00 mM) after additions of a solution of *t*-BuOOH (0.73M).

Figure S17. Comparison of the ⁵¹V NMR spectra measured for the complex $[V^{IV}O(PIMH)_2]$ (7.00 mM) in MeOH-d₄ and of NH₄V^VO₃ after additions of the oxidant. The corresponding δ_V values of oxidoperoxidovanadium(V) clearly differ.

Figure S18. ⁵¹V NMR spectrum of the complex $[V^{IV}O(PIMH)_2]$ (5 mM) in MeOH-d₄ with 1 eq. *t*-BuOOH. A low intensity resonance is detected at δ_V ca. -590 ppm.

Figure S19. ⁵¹V NMR spectrum of $NH_4V^VO_3$ (7 mM) in MeOH-d₄ with 1 eq. *t*-BuOOH.

Figure S20. ⁵¹V NMR spectra of solutions containing $[V^{IV}O(PIMH)_2]$ (5 mM), 1 eq of *t*-BuOOH) and 0, 1 or 2 eq of DBT (substrate added at room temperature), waiting a few minutes before measuring the spectra. The intensity of all peaks appears to decrease upon additions of DBT.

Figure S21. ⁵¹V NMR spectra of solutions in MeOH:toluene (90:10) containing $[V^{IV}O(PIMH)_2]$ (concentration < 3 mM) after several hours in contact with air. Peaks are detected at $\delta_V = -506.3$ and -552.6 ppm.

Figure S22. ⁵¹V NMR spectra of solutions containing $[V^{IV}O(PIMH)_2]$ (concentration < 3 mM) in CH₃CN:toluene (90:10) after ca. 24 h in air and upon successive additions of *t*-BuOOH. Peaks are detected at δ_V = -556 and -563 ppm, probably two isomers of V(V)-PIMH complexes. After adding high amounts of *t*-BuOOH a small peak is detected at -548, probably due to vanadate(V).

Figure S23. ⁵¹V NMR spectra of solutions containing $[V^{IV}O(PIMNO_2)_2]$ (concentration < 3 mM) in MeOH:toluene (90:10) after a few hours in air and upon successive additions of *t*-BuOOH. Peaks are initially detected at $\delta_V = -551$ and -568 after additions of *t*-BuOOH; probably these correspond to isomers of $[V^VO(PIMNO_2)_2]$.

Figure S24. Some of the molecular structures that may be envisaged for $V^VO(HOO)$ -complexes; in several cases charges were omitted. The DFT calculated ⁵¹V NMR chemical shifts and relative Gibbs free energies (G_r, in kcal·mol⁻¹), when comparable, are indicated. The relative energies given are in sequence: gas phase, CH₃CN solution, MeOH solution and heptane solution. Note that

d5a is more stable than **d5**, but its δ_V^{calc} is too negative to be considered as a plausible species, as no resonances were found below ca. |-550| ppm in solutions where peroxides are present.

Table S5. The calculated chemical shifts for species corresponding to **b3** and **c** are included for complexes $[V^{IV}O(PIMH)_2]$, $[V^{IV}O(PIMNO_2)_2]$, $[V^{IV}O(PIMBr)_2]$ and $[V^{IV}O(PIMMeO)_2]$.

Complex (sutructure and substituent)	$\delta_{\rm V}^{\rm calc}$ in CH ₃ CN	$\delta_{ m V}^{ m calc}$ in MeOH
b-NO ₂	-526 ppm	-558 ppm
b3-H	-523 ppm	-567 ppm
b-Br	-526 ppm	-555 ppm
b-OMe	-523 ppm	-547 ppm
c-NO ₂	-553 ppm	-583 ppm
с-Н	-568 ppm	-594 ppm
c-Br	-561 ppm	-589 ppm
c-OMe	-560 ppm	-583 ppm

Figure S25. UV-Vis absorbance changes as a function of time at 293.1 K when mixing 0.01004 mM $[V^{IV}O(PIMH)_2]$ with (a) 0.005020 mM oxidant, (b) 0.01004 mM oxidant, (c) 0.02008 mM oxidant and (d) 0.03012 mM oxidant.

Figure S26. Experimental UV-Vis absorbance changes (symbols) and global non-linear leastsquares fits (solid lines) for wavelengths in the range of 236-245 and 298-310 nm as a function of time at 293.1 K when mixing 0.01004 mM $[V^{IV}O(PIMH)_2]$ with (a) 0.005020 mM oxidant, (b) 0.01004 mM oxidant, (c) 0.02008 mM oxidant, (d) 0.03012 mM oxidant and (e) 0.06997 mM oxidant.

Figure S27. UV-Vis absorbance changes as a function of time and temperature when mixing $0.01004 \text{ mM} [V^{IV}O(PIMH)_2]$ with 0.03502 mM oxidant.

Figure S28. Experimental UV-Vis absorbance changes (symbols) and non-linear least-squares fits (solid lines) for wavelengths in the range of 236-245 and 298-310 nm as a function of temperature when mixing $0.01004 \text{ mM} [V^{IV}O(PIMH)_2]$ with 0.03502 mM oxidant where (a) 303.1 K, (b) 313.1 K, (c) 323.1 K and (d) 333.1 K.

Figure S29. Eyring plots for reactions 8 and 9.

Figure S30. EPR spectrum of the DMPO/• free radical species obtained after immediately adding 0.5 mL of 0.100 M DMPO in DMF to 0.500 mL of 0.100 M $[V^{IV}O(PIMH)_2]$ and mole eq. 0.526 M *t*-BuOOH in DMSO.

Figure S31. (a) UV-Vis spectra for the decomposition of DPBF in the presence and *t*-BuOOH, and (b) the linear plot comparing the decomposition of DPBF in the presence and in the absence of $[V^{IV}O(PIMH)_2]$. Concentrations; 12.98 nmol catalyst, 14.8 nmol DPBF and 5.26 µmol *t*-BuOOH.

Figure S32. (a) Fluorescence spectra collected every 10 minutes upon mixing 3 mL of furfuryl alcohol with $[V^{IV}O(PIMH)_2]$ and t-BuOOH and (b)

Figure S33. Mulliken charges calculated for the donor atoms of the peroxido complexes c-X (in CH₃CN). The trend in reactivity observed cannot be explained from this data. The sum of the Mulliken charges of the two O-peroxido atoms in CH₃CN and heptane is also indicated.