Electronic Supplementary Information

Synthesis, structure and characterizations of M(IO₃)₂(HIO₃) (M = Ca, Sr), new anhydrous alkaline earth metal bis-iodate hydrogeniodate compounds

Yawen An,^a Yang Zhong,^a Tongqing Sun,^{*ab} Haijun Wang,^a Zhenpeng Hu,^a Hongde Liu,^{ab} Shiguo Liu,^a Yongfa Kong ^{abc} and Jingjun Xu ^{abc}

- a. School of Physics, Nankai University, Tianjin 300071, China.
- b. The MOE Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300457, China.
- c. TEDA Institute of Applied Physics, Nankai University, Tianjin 300457, China.

Contents

- **Table S1** Crystallographic data and structure refinements for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).
- **Table S2**Atomic coordinates and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for
M(IO₃)₂(HIO₃) (M = Ca, Sr).
- **Table S3** Anisotropic displacement parameters ($Å^2 \times 10^3$) for M(IO₃)₂(HIO₃) (M = Ca, Sr).
- **Table S4**Selected interatomic distances and calculated bond valence values of the Ca and Sr
atoms for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).
- Table S5
 Selected bond lengths, interatomic distances, calculated bond valence values and bond angles of the iodine atoms for Sr(IO₃)₂(HIO₃)
- **Table S6** Calculated bond valence sum (BVS) of the O atoms for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).
- **Table S7** The state energies (eV) of the lowest conduction band (LCB) and the highest valence
band (HVB) for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).
- **Fig. S1** Photos of Ca(IO₃)₂(HIO₃) (a) and Sr(IO₃)₂(HIO₃) (b) single crystals by the hydrothermal method.
- **Fig. S2** Experimental powder XRD patterns of Ca(IO₃)₂(HIO₃) (a) and Sr(IO₃)₂(HIO₃) (b) and the simulated patterns.
- Fig. S3 Powder XRD patterns of the decomposition productions at 500°C and 950°C for Ca(IO₃)₂(HIO₃) (a) and Sr(IO₃)₂(HIO₃) (b).
- **Fig. S4** Views of the asymmetric units of Ca(IO₃)₂(HIO₃) (a) and Sr(IO₃)₂(HIO₃) (b) with 50% probability displacement.
- Fig. S5 Coordination environments of the $[HIO_3] \cdot [IO_3]^-$ complex (a) and $[I(3)O_3]^-$ (b) on Ca²⁺ in the structure of Ca(IO₃)₂(HIO₃).
- **Fig. S6** Ca₂O₁₄ dimer in the structure of Ca(IO_3)₂(HIO₃).

Formula	Ca(IO ₃) ₂ (HIO ₃)	Sr(IO ₃) ₂ (HIO ₃)
F.W.	565.79	613.33
<i>T</i> (K)	293(2)	293(2)
Crystal System	Monoclinic	Monoclinic
Space Group	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> (Å)	6.9647(14)	7.0697(14)
<i>b</i> (Å)	15.719(3)	15.986(3)
<i>c</i> (Å)	7.2042(14)	7.3802(15)
α (deg)	90.00	90.00
β (deg)	92.76(3)	93.13(3)
γ (deg)	90.00	90.00
$V(Å^3)$	787.8(3)	832.8(3)
Ζ	4	4
$\rho_{\rm cal} ({\rm g/cm^3})$	4.770	4.891
$\mu (\mathrm{mm}^{-1})$	12.578	17.618
$F_{(000)}$	1008	1080
Crystal size (mm ³)	$0.16 \times 0.12 \times 0.11$	$0.08\times0.07\times0.07$
2θ range for data collection	5.856 to 59.996°	5.772 to 60.152°
	$-9 \le h \le 9$	$-9 \le h \le 9$
Index ranges	$-22 \le k \le 19$	$-22 \le k \le 22$
	$-10 \le l \le 8$	$-10 \le l \le 10$
Reflections collected	7098	7655
Independent reflections	2240	2373
R _{int}	0.0442	0.0501
R _{sigma}	0.0335	0.0458
Data/restraints/parameters	2240/0/118	2373/0/118
GOF on F^2	1.217	1.161
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))^{\mathrm{a}}$	0.0346, 0.0843	0.0438, 0.1003
R_1 , w R_2 (all data)	0.0358, 0.0850	0.0471, 0.1024

Table S1 Crystallographic data and structure refinements for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|, wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}.$

Table S2 Atomic coordinates and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for M(IO₃)₂(HIO₃) (M = Ca, Sr). U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Wyck.	x/a	<i>y/b</i>	z/c	$U_{ m eq}$		
	Ca(IO ₃) ₂ (HIO ₃)						
Cal	4 <i>e</i>	0.22814(19)	0.54636(8)	0.86712(18)	12.5(2)		
I1	4e	0.85860(5)	0.22751(2)	0.97855(5)	8.59(10)		
I2	4 <i>e</i>	0.39268(5)	0.31679(2)	0.87569(5)	9.33(10)		
I3	4 <i>e</i>	0.26999(5)	0.47287(2)	1.36963(5)	9.63(10)		
01	4 <i>e</i>	0.8756(8)	0.1802(3)	0.7468(6)	15.4(9)		
O2	4 <i>e</i>	0.8518(7)	0.3366(3)	0.8878(6)	13.6(9)		
O3	4 <i>e</i>	0.5979(7)	0.2168(3)	0.9969(7)	16.1(9)		
O4	4 <i>e</i>	0.4679(7)	0.3844(3)	1.0655(7)	19.0(10)		
O5	4 <i>e</i>	0.2277(7)	0.2464(3)	0.9848(8)	18.7(10)		
O6	4 <i>e</i>	0.1876(7)	0.3936(3)	0.7874(7)	13.5(9)		
H6	4 <i>e</i>	0.08851	0.374038	0.837204	16		
O7	4 <i>e</i>	0.1173(7)	0.4855(3)	1.1602(6)	13.3(9)		
08	4 <i>e</i>	0.1742(7)	0.5532(3)	1.5184(6)	15.0(9)		
09	4 <i>e</i>	0.4854(7)	0.5262(3)	1.2996(7)	16.2(9)		
		Sr	$(IO_3)_2(HIO_3)$				
Sr1	4 <i>e</i>	0.24288(10)	0.54359(5)	0.87786(11)	11.46(17)		
I1	4 <i>e</i>	0.84717(7)	0.22889(3)	0.96634(7)	9.54(13)		
I2	4 <i>e</i>	0.37897(7)	0.31309(3)	0.86172(7)	11.09(13)		
13	4 <i>e</i>	0.26450(7)	0.47368(3)	1.37467(7)	11.33(13)		
01	4 <i>e</i>	0.8632(10)	0.1830(4)	0.7421(8)	18.4(13)		
02	4 <i>e</i>	0.8475(8)	0.3364(3)	0.8815(8)	13.1(11)		
03	4 <i>e</i>	0.5917(8)	0.2193(4)	0.9862(9)	18.6(13)		
04	4 <i>e</i>	0.4441(9)	0.3834(4)	1.0446(9)	21.6(14)		
O5	4 <i>e</i>	0.2216(8)	0.2425(4)	0.9659(10)	21.5(14)		
06	4 <i>e</i>	0.1790(8)	0.3865(4)	0.7662(9)	15.7(12)		
H6	4 <i>e</i>	0.065112	0.393719	0.794268	19		
07	4 <i>e</i>	0.1112(8)	0.4852(4)	1.1725(8)	14.1(11)		
08	4 <i>e</i>	0.1760(8)	0.5537(4)	1.5191(8)	14.7(12)		
O9	4 <i>e</i>	0.4764(8)	0.5236(4)	1.2986(9)	19.2(13)		

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ca(IO ₃) ₂ (HIO ₃)						
Cal	11.5(5)	12.0(5)	13.9(5)	0.0(4)	0.6(4)	-1.6(4)
I1	8.56(19)	8.25(18)	9.01(17)	1.38(12)	0.85(12)	0.80(12)
I2	8.62(19)	8.59(18)	10.86(18)	-0.48(12)	1.23(12)	-0.25(13)
I3	10.03(19)	8.67(18)	10.11(17)	0.02(12)	-0.40(13)	-0.52(13)
O1	27(3)	11(2)	8.8(19)	-2.5(16)	3.1(17)	-1.4(19)
O2	18(2)	10(2)	13(2)	1.3(16)	2.1(17)	1.4(17)
03	10(2)	18(2)	20(2)	7.2(19)	2.3(17)	2.2(18)
O4	17(2)	24(3)	16(2)	-10.7(19)	1.9(18)	-1(2)
O5	11(2)	13(2)	32(3)	8(2)	1.8(19)	-4.0(18)
O6	9(2)	10(2)	21(2)	1.5(17)	0.4(17)	1.5(16)
07	12(2)	15(2)	12(2)	0.2(16)	-3.8(16)	0.3(17)
08	17(2)	13(2)	16(2)	-5.4(17)	3.5(17)	-0.8(18)
O9	11(2)	19(2)	18(2)	0.0(18)	5.7(17)	-5.0(18)
			Sr(IO ₃) ₂ (HI	O ₃)		
Sr1	9.7(3)	12.1(4)	12.6(4)	-0.6(3)	0.2(3)	-0.6(2)
I1	9.4(2)	10.2(2)	9.0(2)	0.88(17)	-0.31(17)	0.86(16)
I2	9.6(2)	10.4(2)	13.3(3)	-0.24(18)	0.54(17)	-0.09(16)
I3	10.9(2)	11.6(2)	11.3(3)	-0.23(18)	-1.33(17)	0.24(17)
01	31(3)	17(3)	7(3)	0(2)	1(2)	-4(3)
02	17(3)	4(2)	18(3)	4(2)	-1(2)	2(2)
O3	5(2)	25(3)	26(3)	8(3)	-1(2)	2(2)
O4	20(3)	20(3)	25(3)	-12(3)	1(3)	-3(3)
05	9(3)	17(3)	38(4)	7(3)	2(3)	-3(2)
O6	9(2)	14(3)	25(3)	3(2)	-3(2)	6(2)
07	13(3)	18(3)	11(3)	4(2)	-5(2)	3(2)
08	18(3)	15(3)	11(3)	-6(2)	-1(2)	-2(2)
09	13(3)	27(3)	19(3)	-8(3)	6(2)	-6(2)

Table S3 Anisotropic displacement parameters ($Å^2 \times 10^3$) for M(IO₃)₂(HIO₃) (M = Ca, Sr).

Atoms	Distance (Å)	Bond Valence	Atoms	Distance (Å)	Bond Valence
Ca1–O1 ⁱ	2.359(5)	0.347	Sr1-O1 ⁱ	2.498(6)	0.358
Ca1–O2 ⁱⁱ	2.628(5)	0.168	Sr1-O2 ⁱⁱ	2.715(6)	0.199
Ca1–O4 ⁱⁱ	2.409(5)	0.303	Sr1-O4 ⁱⁱ	2.540(6)	0.320
Ca1-06	2.483(5)	0.267	Sr1-06	2.674(6)	0.223

Sr1-07

Sr1-07ⁱⁱⁱ

 $Sr1-O8^{iv}$

Sr1-O9ⁱⁱ

<Sr1-O

>

2.586(6)

2.553(6)

2.669(6)

2.659(6)

2.612

BVS

0.282

0.309

0.226

0.232

1.97

0.248

0.253

0.222

0.164

2.15

Table S4Selected interatomic distances and calculated bond valence values of the Ca and Sratoms for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).

ⁱ 1-*x*, 1/2+*y*, 3/2-*z*; ⁱⁱ 1-*x*, 1-*y*, 2-*z*; ⁱⁱⁱ -*x*, 1-*y*, 2-*z*; ^{iv} *x*, *y*, -1+*z*.

Cal-O7

Ca1-O7ⁱⁱⁱ

Ca1-O8^{iv}

Ca1-O9ⁱⁱ

<Cal-O>

2.475(5)

2.456(5)

2.524(5)

2.637(5)

2.496

BVS

Atoms	Distance (Å)	Bond Valence	Atoms	Angle (°)
I1-01	1.820(6)	1.640	O1-I1-O2	93.8(3)
I1-O2	1.829(5)	1.600	O1-I1-O3	98.6(3)
I1-O3	1.827(6)	1.609	O2-I1-O3	97.2(3)
<i1-0></i1-0>	1.825		<0-11-0>	96.3
I1…O1 ⁱ	2.473(6)	0.281		
I1…O5 ⁱⁱ	2.656(6)	0.171		
I1…O8 ⁱⁱⁱ	2.808(6)	0.114		
В	SVS (I1)	5.42		
I2-04	1.797(6)	1.745	O4-I2-O5	102.2(3)
I2-05	1.788(6)	1.788	O4-I2-O6	92.7(3)
I2-06	1.940(6)	1.186	O5-I2-O6	94.6(3)
<i2-0></i2-0>	1.842		<0-12-0>	95.9
I2…O3	2.281(6)	0.473		
I2…O9 ^{iv}	3.065(6)	0.057		
В	SVS (I2)	5.25		
13–07	1.805(6)	1.708	O7–I3–O8	101.8(3)
13–08	1.799(6)	1.736	O7–I3–O9	99.7(3)
I3-09	1.813(6)	1.671	O8–I3–O9	101.0(3)
<i3-o></i3-o>	1.806		<0-I3-0>	100.8
I3…O9 ^v	2.948(3)	0.078		
В	SVS (I3)	5.19		

Table S5Selected bond lengths, interatomic distances, calculated bond valence values and bondangles of the iodine atoms for $Sr(IO_3)_2(HIO_3)$

 $\frac{1}{1} x, 0.5-y, 0.5+z; \text{ ii } 1+x, y, z; \text{ iii } 1-x, -0.5+y, 2.5-z; \text{ iv } 1-x, 1-y, 2-z; \text{ v } 1-x, 1-y, 3-z.}$

Ca(IO ₃) ₂ (HIO ₃)						
Bond Valence	Cal	I1	I2	13	H6	BVS
01	0.247	1.566				2.24
01	0.547	0.328				2.24
O2	0.168	1.575			0.344	2.09
O3		1.575	0.485			2.06
O4	0.303		1.778	0.070		2.15
O5		0.206	1.717			1.92
O6	0.248		1.145		0.850	2.24
07	0.267			1 667		2 10
07	0.253			1.007		2.19
08	0.222	0.133		1.708		2.06
00	0 164		0.085	1.680		2.02
09	0.104		0.085	0.098		2.03
Sr(IO ₃) ₂ (HIO ₃)						
		~~(~~ 5)/2				
Bond Valence	Sr1	I1	I2	I3	H6	BVS
Bond Valence	Sr1	I1 1.640	I2	I3	H6	BVS
Bond Valence O1	Sr1 0.358	I1 1.640 0.281	I2	13	H6	BVS 2.28
Bond Valence O1 O2	Sr1 0.358 0.199	I1 1.640 0.281 1.600	<u>I2</u>	I3	H6 0.244	BVS 2.28 2.04
Bond Valence O1 O2 O3	Sr1 0.358 0.199	I1 1.640 0.281 1.600 1.609	I2 0.473	13	H6 0.244	BVS 2.28 2.04 2.08
Bond Valence O1 O2 O3 O4	Sr1 0.358 0.199 0.320	I1 1.640 0.281 1.600 1.609	I2 0.473 1.745	13	H6 0.244	BVS 2.28 2.04 2.08 2.07
Bond Valence O1 O2 O3 O4 O5	Sr1 0.358 0.199 0.320	II 1.640 0.281 1.600 1.609 0.171	I2 0.473 1.745 1.788	13	H6 0.244	BVS 2.28 2.04 2.08 2.07 1.96
Bond Valence O1 O2 O3 O4 O5 O6	Sr1 0.358 0.199 0.320 0.223	<u>I1</u> 1.640 0.281 1.600 1.609 0.171	I2 0.473 1.745 1.788 1.186	13	H6 0.244 0.850	BVS 2.28 2.04 2.08 2.07 1.96 2.26
Bond Valence O1 O2 O3 O4 O5 O6 O7	Sr1 0.358 0.199 0.320 0.223 0.309	<u>I1</u> 1.640 0.281 1.600 1.609 0.171	I2 0.473 1.745 1.788 1.186	13	H6 0.244 0.850	BVS 2.28 2.04 2.08 2.07 1.96 2.26 2.30
Bond Valence O1 O2 O3 O4 O5 O6 O7	Sr1 0.358 0.199 0.320 0.223 0.309 0.282	<u>I1</u> 1.640 0.281 1.600 1.609 0.171	I2 0.473 1.745 1.788 1.186	I3 1.708	H6 0.244 0.850	BVS 2.28 2.04 2.07 1.96 2.26 2.30
Bond Valence O1 O2 O3 O4 O5 O6 O7 O8	Sr1 0.358 0.199 0.320 0.223 0.309 0.282 0.226	II 1.640 0.281 1.600 1.609 0.171 0.114	I2 0.473 1.745 1.788 1.186	I3 1.708 1.736	H6 0.244 0.850	BVS 2.28 2.04 2.08 2.07 1.96 2.26 2.30 2.08
Bond Valence O1 O2 O3 O4 O5 O6 O7 O8	Sr1 0.358 0.199 0.320 0.223 0.309 0.282 0.226	<u>II</u> <u>1.640</u> 0.281 <u>1.600</u> <u>1.609</u> 0.171 0.114	0.473 1.745 1.788 1.186	I3 1.708 1.736 1.671	H6 0.244 0.850	BVS 2.28 2.04 2.08 2.07 1.96 2.26 2.30 2.08 2.04

Table S6 Calculated bond valence sum (BVS) of the O atoms for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr)^{*}.

* The bond valence parameters R_0 of Ca–O, Sr–O and I–O bonds in the calculations were 1.967, 2.118 and 2.003, respectively.^[1] For O–H…O hydrogen bond, the value of R_0 was 0.790 for O–H bond, and 1.409 for O…H bond.^[2] The bond valence parameters *B* of all bonds were 0.37.

Ref:

[1] I. D. Brown and D. Altermatt, Acta Cryst., 1985, B41, 244–247.

[2] D. Yu, D. Xue and H. Ratajczak, *Phys. B*, 2006, 371, 170–176.

Compound	<i>k</i> -point	HVB	LCB
	Z (0.000, 0.000, 0.500)	-0.539	3.539
	G (0.000, 0.000, 0.000)	-0.391	3.227
	Y (0.000, 0.500, 0.000)	-0.415	3.285
$C_{2}(IO_{1})(IIIO_{1})$	A (-0.500, 0.500, 0.000)	-0.350	3.004
$Ca(1O_3)_2(11O_3)$	B (-0.500, 0.000, 0.000)	-0.329	2.967
	D (-0.500, 0.000, 0.500)	-0.455	3.068
	E (-0.500, 0.500, 0.500)	-0.465	3.049
	C (0.000, 0.500, 0.500)	-0.540	3.543
	Z (0.000, 0.000, 0.500)	-0.581	3.566
	G (0.000, 0.000, 0.000)	-0.393	3.251
	Y (0.000, 0.500, 0.000)	-0.407	3.341
$S_{r}(IO)(IIIO)$	A (-0.500, 0.500, 0.000)	-0.318	3.005
SI(IO ₃) ₂ (IIIO ₃)	B (-0.500, 0.000, 0.000)	-0.301	2.983
	D (-0.500, 0.000, 0.500)	-0.504	3.086
	E (-0.500, 0.500, 0.500)	-0.508	3.066
	C (0.000, 0.500, 0.500)	-0.581	3.569

Table S7 The state energies (eV) of the lowest conduction band (LCB) and the highest valenceband (HVB) for $M(IO_3)_2(HIO_3)$ (M = Ca, Sr).

Fig. S1 Photos of $Ca(IO_3)_2(HIO_3)$ (a) and $Sr(IO_3)_2(HIO_3)$ (b) single crystals by the hydrothermal method.

Fig. S2 Experimental powder XRD patterns of $Ca(IO_3)_2(HIO_3)$ (a) and $Sr(IO_3)_2(HIO_3)$ (b) and the simulated patterns.

Fig. S3 Powder XRD patterns of the decomposition productions at 500°C and 950°C for $Ca(IO_3)_2(HIO_3)$ (a) and $Sr(IO_3)_2(HIO_3)$ (b).

Fig. S4 Views of the asymmetric units of $Ca(IO_3)_2(HIO_3)$ (a) and $Sr(IO_3)_2(HIO_3)$ (b) with 50% probability displacement.

Fig. S5 Coordination environments of the $[HIO_3] \cdot [IO_3]^-$ complex (a) and $[I(3)O_3]^-$ (b) on Ca²⁺ in the structure of Ca(IO₃)₂(HIO₃).

Fig. S6 Ca_2O_{14} dimer in the structure of $Ca(IO_3)_2(HIO_3)$.