Pb₁₀O₄(BO₃)₃I₃: A New Noncentrosymmetric Oxyborate Iodide

Synthesized by the Straightforward Hydrothermal Method

Jinjie Zhou,^a Hongping Wu,^a Hongwei Yu,^{*a} Zhanggui Hu^{*a} and Yicheng Wu^a ^a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China. To whom correspondence should be addressed. E-mail: hwyu15@gmail.com.

CONTENTS

1.	Table S1 (Crystal data and structure refinement)	S2
2.	Table S2 (Atomic coordinates, displacement parameters and BVS)	S5
3.	Table S3 (Selected bond distances and angles)	S6
4.	Table S4 (The dipole moments of BO ₃)	S7
5.	<i>Figure S1</i> (The TG-DSC curves and powder XRD patterns of the residual after	
	TG/DTA)	S8
6.	Figure S2 (The direction of the dipole moments of the repeating unit)	S9
7.	Figure S3 (The direction of the dipole moments of BO ₃ groups in the unit cell)	S10

Empirical formula	$Pb_{10}O_4(BO_3)_3I_3$		
Formula weight	2693.03		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	Сс		
Unit cell dimensions	a = 16.6423(5) Å		
	b = 9.0277(3) Å		
	c = 16.9746(5) Å		
	$\beta = 115.6580(10)^{\circ}$		
Volume	2298.82(12) Å ³		
Z	4		
Density (g/cm ³)	7.781		
Absorption coefficient (mm ⁻¹)	77.019		
F(000)	4392		
Theta range for data collection	2.63 to 27.50		
Limiting indices	$-21 \le h \le 21, -10 \le k \le 11, -22$ $\le l \le 22$		
Reflections collected / unique	$16455/5081[R_{int} = 0.0455]$		
Completeness to theta	99.8 %		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5081 / 80 / 264		
Goodness-of-fit on F ²	1.043		
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^{[a]}$	$R_1 = 0.0247$		
	$wR_2 = 0.0553$		
<i>R</i> indices (all data) ^[a]	$R_1 = 0.0261$		
	$wR_2 = 0.0559$		
Absolute structure parameter	0.368(8)		
Extinction coefficient	0.000035(5)		
Largest diff neak and hole	2 829 and -1 696 e [.] Å ⁻³		

Table S1. Crystal Data and Structure Refinement for $Pb_{10}O_4(BO_3)_3I_3$.

Atoms	Х	У	Z	U(eq)	BVS
Pb(1)	6714(1)	4692(1)	2192(1)	8(1)	1.985
Pb(2)	7842(1)	10395(1)	3170(1)	6(1)	2.197
Pb(3)	11150(1)	15320(1)	4279(1)	7(1)	1.955
Pb(4)	10024(1)	9681(1)	3276(1)	6(1)	1.985
Pb(5)	9894(1)	12534(1)	4896(1)	7(1)	1.827
Pb(6)	8029(1)	7474(1)	1605(1)	6(1)	1.825
Pb(7)	9158(1)	13516(1)	2666(1)	7(1)	1.955
Pb(8)	8765(1)	6633(1)	3913(1)	6(1)	1.952
Pb(9)	5587(1)	8216(1)	1222(1)	8(1)	2.124
Pb(10)	12403(1)	11609(1)	5340(1)	9(1)	2.165
I(1)	7713(1)	6495(1)	9323(1)	10(1)	0.7807
I(2)	200(1)	3527(1)	7146(1)	10(1)	0.7437
I(3)	8982(1)	9568(1)	5794(1)	11(1)	0.5109
B(1)	6449(13)	7500(20)	3330(11)	5(2)	3.031
B(2)	6982(12)	10900(20)	1311(11)	7(3)	2.908
B(3)	5919(14)	5870(20)	82(14)	19(4)	3.010
O(1)	9185(7)	11492(12)	3568(7)	6(2)	2.394
O(2)	8675(8)	8560(13)	2920(8)	10(2)	2.3834
O(3)	10386(7)	8167(13)	4489(7)	7(2)	1.997
O(4)	7480(9)	11815(15)	1971(9)	17(3)	2.014
O(5)	11002(7)	10588(13)	4866(7)	10(2)	2.105
O(6)	11571(7)	13585(12)	5434(7)	4(2)	2.170
O(7)	8069(7)	5531(12)	2576(7)	7(2)	2.237
O(8)	9768(6)	14646(11)	4039(7)	7(2)	2.244
O(9)	6363(8)	6301(13)	950(8)	12(2)	2.161
O(10)	6895(8)	9423(13)	1471(8)	10(2)	2.075
O(11)	6374(6)	7081(11)	2505(7)	12(2)	2.144
O(12)	5794(7)	8238(12)	3406(8)	17(2)	2.088
O(13)	7252(6)	7259(11)	4034(6)	11(2)	2.007

Table S2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for Pb₁₀O₄(BO₃)₃I₃. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Pb(1)-O(7)	2.193(10)	O(7)-Pb(6)-O(9)	73.4(3)
Pb(1)-O(11)	2.349(10)	O(10)-Pb(6)-O(9)	69.1(4)
Pb(1)-O(9)	2.414(12)	O(8)-Pb(7)-O(1)	79.3(4)
Pb(2)-O(4)	2.255(14)	O(8)-Pb(7)-O(12)#1	68.3(4)
Pb(2)-O(1)	2.264(11)	O(1)-Pb(7)-O(12)#1	83.4(4)
Pb(2)-O(2)	2.316(12)	O(8)-Pb(7)-O(7)#4	74.7(3)
Pb(3)-O(8)	2.240(10)	O(1)-Pb(7)-O(7)#4	114.0(4)
Pb(3)-O(12)#1	2.307(11)	O(12)#1-Pb(7)-O(7)#4	135.2(3)
Pb(3)-O(6)	2.366(11)	O(7)-Pb(8)-O(2)	76.4(4)
Pb(3)-I(2)#2	3.4248(12)	O(7)-Pb(8)-O(8)#5	78.2(3)
Pb(4)-O(2)	2.292(12)	O(2)-Pb(8)-O(8)#5	115.9(4)
Pb(4)-O(3)	2.324(11)	O(7)-Pb(8)-O(13)	94.6(3)
Pb(4)-O(1)	2.339(11)	O(2)-Pb(8)-O(13)	97.4(4)
Pb(4)-O(5)	2.608(11)	O(8)#5-Pb(8)-O(13)	142.6(3)
Pb(5)-O(1)	2.249(11)	O(11)-Pb(9)-O(10)	86.0(4)
Pb(5)-O(8)	2.352(10)	O(11)-Pb(9)-O(9)	73.2(4)
Pb(5)-O(5)	2.563(11)	O(10)-Pb(9)-O(9)	80.0(4)
Pb(5)-O(6)	2.705(11)	O(13)#1-Pb(10)-O(5)	95.6(4)
Pb(6)-O(2)	2.240(12)	O(13)#1-Pb(10)-O(6)	93.1(4)
Pb(6)-O(7)	2.387(10)	O(5)-Pb(10)-O(6)	77.7(4)
Pb(6)-O(10)	2.516(12)	O(12)-B(1)-O(13)	121.7(15)
Pb(6)-O(9)	2.716(13)	O(12)-B(1)-O(11)	120.6(15)
Pb(7)-O(8)	2.335(10)	O(13)-B(1)-O(11)	117.3(15)
Pb(7)-O(1)	2.371(11)	O(4)-B(2)-O(10)	120.3(15)
Pb(7)-O(12)#1	2.469(10)	O(4)-B(2)-O(6)#7	121.2(15)
Pb(7)-O(7)#4	2.525(10)	O(10)-B(2)-O(6)#7	118.4(14)
Pb(8)-O(7)	2.282(10)	O(3)#8-B(3)-O(9)	119.3(17)
Pb(8)-O(2)	2.381(12)	O(3)#8-B(3)-O(5)#8	121.9(17)
Pb(8)-O(8)#5	2.397(10)	O(9)-B(3)-O(5)#8	118.7(17)
Pb(8)-O(13)	2.674(10)	O(3)#8-B(3)-Pb(4)#8	55.2(9)
Pb(9)-O(11)	2.245(10)	O(9)-B(3)-Pb(4)#8	173.7(15)
Pb(9)-O(10)	2.305(12)	O(5)#8-B(3)-Pb(4)#8	67.1(9)
Pb(9)-O(9)	2.321(11)	Pb(5)-O(1)-Pb(2)	120.2(5)
Pb(10)-O(13)#1	2.200(10)	Pb(5)-O(1)-Pb(4)	113.7(5)
Pb(10)-O(5)	2.304(12)	Pb(2)-O(1)-Pb(4)	103.5(4)
Pb(10)-O(6)	2.306(11)	Pb(5)-O(1)-Pb(7)	100.4(4)
I(2)-Pb(3)#6	3.4248(12)	Pb(2)-O(1)-Pb(7)	113.9(5)
B(1)-O(12)	1.33(2)	Pb(4)-O(1)-Pb(7)	104.4(5)
B(1)-O(13)	1.37(2)	Pb(6)-O(2)-Pb(4)	116.7(6)
B(1)-O(11)	1.40(2)	Pb(6)-O(2)-Pb(2)	115.3(5)
B(2)-O(4)	1.35(2)	Pb(4)-O(2)-Pb(2)	103.4(5)
B(2)-O(10)	1.38(2)	Pb(6)-O(2)-Pb(8)	104.0(5)
B(2)-O(6)#7	1.42(2)	S₽ b(4)-O(2)-Pb(8)	112.5(5)

Table S3. Selected bond distances (Å) and angles (deg) for $Pb_{10}O_4(BO_3)_3I_3$.

B(3)-O(3)#8	1.34(2)	Pb(2)-O(2)-Pb(8)	104.6(5)
B(3)-O(9)	1.39(2)	B(3)#3-O(3)-Pb(4)	96.7(11)
B(3)-O(5)#8	1.39(2)	B(2)-O(4)-Pb(2)	103.4(11)
O(3)-B(3)#3	1.34(2)	B(3)#3-O(5)-Pb(10)	119.2(11)
O(5)-B(3)#3	1.39(2)	B(3)#3-O(5)-Pb(5)	119.3(12)
O(6)-B(2)#9	1.42(2)	Pb(10)-O(5)-Pb(5)	110.3(4)
O(7)-Pb(7)#5	2.525(10)	B(3)#3-O(5)-Pb(4)	83.6(10)
O(8)-Pb(8)#4	2.397(10)	Pb(10)-O(5)-Pb(4)	124.8(5)
O(12)-Pb(3)#10	2.307(11)	Pb(5)-O(5)-Pb(4)	96.0(3)
O(12)-Pb(7)#10	2.469(10)	B(2)#9-O(6)-Pb(10)	107.0(9)
O(13)-Pb(10)#10	2.200(10)	B(2)#9-O(6)-Pb(3)	119.3(9)
O(7)-Pb(1)-O(11)	86.2(4)	Pb(10)-O(6)-Pb(3)	115.2(5)
O(7)-Pb(1)-O(9)	83.2(4)	B(2)#9-O(6)-Pb(5)	115.2(10)
O(11)-Pb(1)-O(9)	69.8(4)	Pb(10)-O(6)-Pb(5)	105.5(4)
O(4)-Pb(2)-O(1)	82.2(4)	Pb(3)-O(6)-Pb(5)	93.5(3)
O(4)-Pb(2)-O(2)	100.8(5)	Pb(1)-O(7)-Pb(8)	117.4(5)
O(1)-Pb(2)-O(2)	77.0(4)	Pb(1)-O(7)-Pb(6)	109.3(4)
O(8)-Pb(3)-O(12)#1	72.8(4)	Pb(8)-O(7)-Pb(6)	102.5(4)
O(8)-Pb(3)-O(6)	83.3(4)	Pb(1)-O(7)-Pb(7)#5	112.8(4)
O(12)#1-Pb(3)-O(6)	84.0(4)	Pb(8)-O(7)-Pb(7)#5	102.2(4)
O(8)-Pb(3)-I(2)#2	85.6(3)	Pb(6)-O(7)-Pb(7)#5	112.1(4)
O(12)#1-Pb(3)-I(2)#2	72.3(3)	Pb(3)-O(8)-Pb(7)	105.6(4)
O(6)-Pb(3)-I(2)#2	155.9(3)	Pb(3)-O(8)-Pb(5)	107.4(4)
O(2)-Pb(4)-O(3)	79.7(4)	Pb(7)-O(8)-Pb(5)	98.5(4)
O(2)-Pb(4)-O(1)	76.0(4)	Pb(3)-O(8)-Pb(8)#4	115.7(4)
O(3)-Pb(4)-O(1)	99.9(4)	Pb(7)-O(8)-Pb(8)#4	104.6(4)
O(2)-Pb(4)-O(5)	120.8(4)	Pb(5)-O(8)-Pb(8)#4	122.3(4)
O(3)-Pb(4)-O(5)	57.4(4)	B(3)-O(9)-Pb(9)	109.6(11)
O(1)-Pb(4)-O(5)	73.9(4)	B(3)-O(9)-Pb(1)	125.0(12)
O(2)-Pb(4)-B(3)#3	101.9(6)	Pb(9)-O(9)-Pb(1)	102.7(5)
O(3)-Pb(4)-B(3)#3	28.2(5)	B(3)-O(9)-Pb(6)	121.6(12)
O(1)-Pb(4)-B(3)#3	88.6(5)	Pb(9)-O(9)-Pb(6)	100.7(4)
O(5)-Pb(4)-B(3)#3	29.3(5)	Pb(1)-O(9)-Pb(6)	93.4(4)
O(1)-Pb(5)-O(8)	81.4(4)	B(2)-O(10)-Pb(9)	126.2(10)
O(1)-Pb(5)-O(5)	76.3(4)	B(2)-O(10)-Pb(6)	123.7(10)
O(8)-Pb(5)-O(5)	114.6(4)	Pb(9)-O(10)-Pb(6)	107.3(5)
O(1)-Pb(5)-O(6)	120.1(4)	B(1)-O(11)-Pb(9)	127.4(10)
O(8)-Pb(5)-O(6)	74.2(3)	B(1)-O(11)-Pb(1)	123.2(10)
O(5)-Pb(5)-O(6)	66.5(3)	Pb(9)-O(11)-Pb(1)	107.2(4)
O(2)-Pb(6)-O(7)	77.1(4)	B(1)-O(12)-Pb(3)#10	118.5(10)
O(2)-Pb(6)-O(10)	78.6(4)	B(1)-O(12)-Pb(7)#10	140.5(11)
O(7)-Pb(6)-O(10)	111.9(4)	Pb(3)#10-O(12)-Pb(7)#10	99.4(4)
O(2)-Pb(6)-O(9)	122.9(4)	B(1)-O(13)-Pb(10)#10	124.3(10)
		B(1)-O(13)-Pb(8)	124.2(10)

Pb(10)#10-O(13)-Pb(8)

108.7(4)

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,y+1/2,z #2 x+1,-y+2,z-1/2 #3 x+1/2,-y+3/2,z+1/2 #4 x,y+1,z #5 x,y-1,z #6 x-1,-y+2,z+1/2 #7 x-1/2,-y+5/2,z-1/2 #8 x-1/2,-y+3/2,z-1/2 #9 x+1/2,-y+5/2,z+1/2 #10 x-1/2,y-1/2,z

		X-axis	Y-axis	Z-axis
Repeating units	Polyhedron	Dipole moment	Dipole moment	Dipole moment
	B(1)O ₃	1.103519	-0.96203	-0.58298
BO ₃	B(2)O ₃	0.268616	-0.39973	-0.55312
	B(3)O ₃			
		-0.35877	0.366225	0.799839

Table S4. The dipole moments of BO_{3} .

Figure S1. The thermal analysis of $Pb_{10}O_4(BO_3)_3I_3$: (a) The TG-DSC curves of polycrystalline sample of $Pb_{10}O_4(BO_3)_3I_3$. (b) The powder XRD patterns of the residual after TG/DTA for $Pb_{10}O_4(BO_3)_3I_3$.

Figure S3. The dipole moments direction of BO₃ groups in the unit cell.

