Preparation of Monocarbonyl Ruthenium Complexes Bearing Bidentate Nitrogen and Phosphine Ligands and their Catalytic Activity in the Carbonyl Compound Reduction.

Steven Giboulot,^{a,b} Clara Comuzzi,^a Alessandro Del Zotto,^a Rosario Figliolia,^a Giovanna Lippe,^a Denise Lovison,^a Paolo Strazzolini,^a Sabina Susmel,^a Ennio Zangrando,^c Daniele Zuccaccia,^a Salvatore Baldino,^{a,d} Maurizio Ballico,^{a,*} Walter Baratta^{a,*}

Supporting Information

Table of Contents:

Figure S1. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(PCy ₃)(en)] (1)	Pag. S1
Figure S2. ¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(PCy ₃)(en)] (1)	Pag. S2
Figure S3. ¹³ C{ ¹ H} PENDANT NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(PCy ₃)(en)] (1))	Pag. S3
Figure S4. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(PCy ₃)(ampy)] (2)	Pag. S4
Figure S5. ¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(PCy ₃)(ampy)] (2)	Pag. S5
Figure S6 . ¹³ C{ ¹ H} PENDANT NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(PCy ₃)(ampy)] (2)	Pag. S6
Figure S7. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(P <i>i</i> Pr ₃)(en)] (3)	Pag. S7
Figure S8. ¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(P <i>i</i> Pr ₃)(en)] (3)	Pag. S8
Figure S9 . ¹³ C{ ¹ H} PENDANT NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(P <i>i</i> Pr ₃)(en)] (3)	Pag. S9
Figure S10. ³¹ P{ ¹ H} NMR spectrum of [Ru(OAc)(CO)(PPh ₃)(en)]OAc (4)	Pag. S10
Figure S11. ¹ H NMR spectrum of [Ru(OAc)(CO)(PPh ₃)(en)]OAc (4)	Pag. S11
Figure S12. ¹³ C{ ¹ H} DEPTQ spectrum of [Ru(OAc)(CO)(PPh ₃)(en)]OAc (4)	Pag. S12
Figure S13. Control ${}^{31}P{}^{1}H$ NMR spectrum of the mixture of [Ru(OAc)(CO)(PPh ₃)(e	en)]OAc (4)
and $trans$ -[Ru(OAc) ₂ (CO)(PPh ₃)(en)] (B)	Pag. S13
Figure S14. Control ¹ H NMR spectrum of the mixture of [Ru(OAc)(CO)(PPh ₃)(en)]C	Ac (4) and
<i>trans</i> -[Ru(OAc) ₂ (CO)(PPh ₃)(en)] (B)	Pag. S14

Figure S15. ³¹ P{ ¹ H} NMR spectrum of $[Ru(OAc)(CO)(PPh_3)(ampy)]OAc$ (5)	Pag. S15
Figure S16. ¹ H NMR spectrum of [Ru(OAc)(CO)(PPh ₃)(ampy)]OAc (5)	Pag. S16
Figure S17. ¹³ C{ ¹ H} DEPTQ spectrum of [Ru(OAc)(CO)(PPh ₃)(ampy)]OAc (5)	Pag. S17
Figure S18 . Effect of the addition of NaOAc to [Ru(OAc)(CO)(ampy)(PPh ₃)]OAc (5) in	the methyl
acetate region of the ¹ H NMR spectrum.	Pag. S18
Figure S19 . Control ³¹ P{ ¹ H} NMR spectrum of the mixture of [Ru(OAc)(CO)(PPh ₃)(ampy)]OAc
(5) and <i>trans</i> -[$Ru(OAc)_2(CO)(PPh_3)(ampy)$] (B')	Pag. S19
Figure S20. Control ¹ H NMR spectrum of the mixture of [Ru(OAc)(CO)(PPh ₃)(ampy)]O	OAc (5) and
<i>trans</i> -[Ru(OAc) ₂ (CO)(PPh ₃)(ampy)] (B ')	Pag. S20
Figure S21. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(dppb)(PPh ₃)] (6)	Pag. S21
Figure S22. ¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(dppb)(PPh ₃)] (6)	Pag. S22
Figure S23. ¹³ C{ ¹ H} DEPTQ NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(dppb)(PPh ₃)] (6)	Pag. S23
Figure S24. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(dppf)(PPh ₃)] (7)	Pag. S24
Figure S25. ¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(dppf)(PPh ₃)] (7)	Pag. S25
Figure S26. ¹³ C{ ¹ H} DEPTQ NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)(dppf)(PPh ₃)] (7)	Pag. S26
Figure S27. ³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)((R)-BINAP)(PPh ₃)] (8)	Pag. S27
Figure S28. ¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)((R)-BINAP)(PPh ₃)] (8)	Pag. S28
Figure S29. ¹³ C{ ¹ H} DEPTQ NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)((R)-BINAP)(PPh ₃)]	(8)

Pag. S29

Figure S30. ³¹P-¹H HMBC 2D NMR spectrum of *trans*-[RuCl₂(CO)((*R*)-BINAP)(PPh₃)] (8)

Pag. S30

Figure S31. ³¹P{¹H} NMR spectrum of *trans*-[RuCl₂(CO)((S,R)-Josiphos)(PPh₃)] (9) Pag. S31

Figure S32. ¹H NMR spectrum of *trans*-[RuCl₂(CO)((*S*,*R*)-Josiphos)(PPh₃)] (9) Pag. S32

Figure S33. ¹³C{¹H} DEPTQ NMR spectrum of *trans*-[RuCl₂(CO)((*S*,*R*)-Josiphos)(PPh₃)] (9) Pag. S33

Figure S34. ³¹P{¹H} NMR spectrum of *trans*-[RuCl₂(CO)((R,R)-Skewphos)(PPh₃)] (10) Pag. S34

Figure S35.	¹ H NMR spectrum of <i>trans</i> -[RuCl ₂ (CO)((R,R)-Skewphos)(PPh ₃)] (10)	Pag. S35
Figure S36.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)(dppb)] (11) at 20 °C	Pag. S36
Figure S37.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)(dppb)] (11) at - 60° C	Pag. S37
Figure S38.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)(dppb)] (11) at - 80 °C	Pag. S38
Figure S39.	¹ H NMR spectrum of [[Ru(OAc) ₂ (CO)(dppb)] (11) at 20 °C	Pag. S39
Figure S40.	¹ H NMR spectrum of [Ru(OAc) ₂ (CO)(dppb)] (11) at - 80 °C	Pag. S40
Figure S41.	¹³ C{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)(dppb)] (11) at 20 °C	Pag. S41
Figure S42.	¹³ C{ ¹ H} PENDANT NMR spectrum of [Ru(OAc) ₂ (CO)(dppb)] (11) at 20 °C	

Pag. S42

Figure S43. ¹³C{¹H} PENDANT NMR spectrum of [Ru(OAc)₂(CO)(dppb)] (11) at - 80 °C

Pag. S43

Figure S44.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)(dppf)] (12) at 20 °C	Pag. S44
Figure S45.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)(dppf)] (12) at - 70 °C	Pag. S45
Figure S46.	¹ H NMR spectrum of [Ru(OAc) ₂ (CO)(dppf)] (12) at 20 °C	Pag. S46
Figure S47.	¹ H NMR spectrum of [Ru(OAc) ₂ (CO)(dppf)] (12) at - 70 °C	Pag. S47
Figure S48.	¹³ C{ ¹ H} PENDANT NMR spectrum of [Ru(OAc) ₂ (CO)(dppf)] (12) at 20 °C	I

Pag. S48

Figure S49. ¹³C{¹H} PENDANT NMR spectrum of [Ru(OAc)₂(CO)(dppf)] (12) at - 70 $^{\circ}$ C

Pag. S49

Figure S50.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)((R)-BINAP)] (13) at 20 °C	Pag. S50
Figure S51.	³¹ P{ ¹ H} NMR spectrum of [Ru(OAc) ₂ (CO)((R)-BINAP)] (13) at - 60 °C	Pag. S51
Figure S52.	¹ H NMR spectrum of [Ru(OAc) ₂ (CO)((R)-BINAP)] (13) at 20 °C	Pag. S52
Figure S53.	¹ H NMR spectrum of [Ru(OAc) ₂ (CO)((R)-BINAP)] (13) at - 60 °C	Pag. S53
Figure S54.	¹³ C{ ¹ H} PENDANT NMR spectrum of [Ru(OAc) ₂ (CO)((R)-BINAP)] (13) a	at - 60 °C
		Pag. S54

Figure S55. ³¹P{¹H} NMR spectrum of [Ru(OAc)₂(CO)((*R*,*R*)-Skewphos)] (14) at 20 °C Pag. S55

Figure S56. ³¹P{¹H} NMR spectrum of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) at - 60 °C

	Pag. S56
Figure S57. ¹ H NMR spectrum of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) at 20 °C	Pag. S57
Figure S58. ¹ H NMR spectrum of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) at - 60 °C	Pag. S58
Figure S59. ¹³ C{ ¹ H} PENDANT NMR spectrum of $[Ru(OAc)_2(CO)((R,R)-Skewph)]$	os)] (14) at - 60
°C	Pag. S59
Figure S60. ³¹ P{ ¹ H} NMR spectrum of [RuCl(CO)(dppb)(en)]Cl (15)	Pag. S60
Figure S61. ¹ H NMR spectrum of [RuCl(CO)(dppb)(en)]Cl (15)	Pag. S61
Figure S62 . ¹³ C{ ¹ H} PENDANT NMR spectrum of [RuCl(CO)(dppb)(en)]Cl (15)	Pag. S62
Figure S63. ³¹ P{ ¹ H} NMR spectrum of [RuCl(CO)(dppf)(en)]Cl (16)	Pag. S63
Figure S64. ¹ H NMR spectrum of [RuCl(CO)(dppf)(en)]Cl (16)	Pag. S64
Figure S65. ¹³ C{ ¹ H} PENDANT NMR spectrum of [RuCl(CO)(dppf)(en)]Cl (16)	Pag. S65
Figure S66. ³¹ P{ ¹ H} NMR spectrum of [Ru(OAc)(CO)(dppb)(en)]OAc (17)	Pag. S66
Figure S67. ¹ H NMR spectrum of [Ru(OAc)(CO)(dppb)(en)]OAc (17)	Pag. S67
Figure S68. ¹³ C{ ¹ H} PENDANT NMR spectrum of [Ru(OAc)(CO)(dppb)(en)]OAc	(17) Pag. S68
Figure S69. ¹⁵ N- ¹ H HSQC 2D NMR spectrum of [Ru(OAc)(CO)(dppb)(en)]OAc (1	7) Pag. S69
Figure S70. ³¹ P{ ¹ H} NMR spectrum of [Ru(OAc)(CO)(dppb)(ampy)]OAc (18)	Pag. S70
Figure S71. ¹ H NMR spectrum of [Ru(OAc)(CO)(dppb)(ampy)]OAc (18)	Pag. S71
Figure S72. ¹³ C{ ¹ H} PENDANT NMR spectrum of [Ru(OAc)(CO)(dppb)(ampy)]C	OAc (18)

Pag. S72

Figure S73. ¹H NMR spectrum which evidences of the formation of a ruthenium monohydridespecies from [Ru(OAc)(CO)(dppb)(ampy)]OAc (18)Pag. S73Figure S74. ³¹P{¹H} NMR spectrum of [Ru(OAc)(CO)(dppf)(en)]OAc (19)Pag. S74Figure S75. ¹H NMR spectrum of [Ru(OAc)(CO)(dppf)(en)]OAc (19)Pag. S75Figure S76. ¹³C{¹H} PENDANT NMR spectrum of [Ru(OAc)(CO)(dppf)(en)]OAc (19)Pag. S76Figure S77. ³¹P{¹H} NMR spectrum of [Ru(OAc)(CO)(dppf)(ampy)]OAc (20)Pag. S77

Figure S78. ¹H NMR spectrum of [Ru(OAc)(CO)(dppf)(ampy)]OAc (20)Pag. S78Figure S79. ¹³C {¹H} PENDANT NMR spectrum of [Ru(OAc)(CO)(dppf)(ampy)]OAc (20)Pag. S79Table S1. Further data regarding the catalytic TH of acetophenone (0.1 M) with complexes 6-14(S/C 1000) in 2-propanol at 82 °CPag. S80Table S2. Further data regarding the catalytic TH of aldehydes and ketones (0.1 M) to alcohols with complexes 1, 3-5 and 15-16 (S/C 1000) in 2-propanol at 82 °CPag. S81Table S3. Further data regarding the catalytic HY (30 bar) of ketones (2.0 M) to alcohols with complexes 2, 15 and KOtBu (2 mol%) as base in EtOH at 70 °CPag. S82

Figure S1. ³¹P{¹H} NMR spectrum (81.0 MHz) of *trans*-[RuCl₂(CO)(PCy₃)(en)] (1) in CD₂Cl₂ at 20 °C.

Figure S2. ¹H NMR spectrum (200.1 MHz) of *trans*-[RuCl₂(CO)(PCy₃)(en)] (1) in CD₂Cl₂ at 20 $^{\circ}$ C.

Figure S3. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of *trans*-[RuCl₂(CO)(PCy₃)(en)] (1) in CD_2Cl_2 at 20 °C.

Figure S4. ³¹P{¹H} NMR spectrum (81.0 MHz) of *trans*-[RuCl₂(CO)(PCy₃)(ampy)] (2) in CD₂Cl₂ at 20 °C.

Figure S5. ¹H NMR spectrum (200.1 MHz) of *trans*-[RuCl₂(CO)(PCy₃)(ampy)] (**2**) in CD₂Cl₂ at 20 °C.

Figure S6. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of *trans*-[RuCl₂(CO)(PCy₃)(ampy)] (2) in CD₂Cl₂ at 20 °C.

Figure S7. ³¹P{¹H} NMR spectrum (81.0 MHz) of *trans*-[RuCl₂(CO)(P*i*Pr₃)(en)] (3) in CD₂Cl₂ at 20 °C.

Figure S8. ¹H NMR spectrum (200.1 MHz) of *trans*-[RuCl₂(CO)(P*i*Pr₃)(en)] (3) in CD₂Cl₂ at 20 °C.

Figure S9. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of *trans*-[RuCl₂(CO)(P*i*Pr₃)(en)] (**3**) in CD₂Cl₂ at 20 °C.

Figure S10. ³¹P{¹H} NMR spectrum (162.0 MHz) of [Ru(OAc)(CO)(PPh₃)(en)]OAc (4) in CD_2Cl_2 at 20 °C.

Figure S11. ¹H NMR spectrum (400.1 MHz) of [Ru(OAc)(CO)(PPh₃)(en)]OAc (4) in CD₂Cl₂ at 20 °C.

Figure S12. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of $[Ru(OAc)(CO)(PPh_3)(en)]OAc$ (4) in CD_2Cl_2 at 20 °C.

Figure S13. Control ${}^{31}P{}^{1}H$ NMR spectrum (81.0 MHz) of the mixture of [Ru(OAc)(CO)(PPh₃)(en)]OAc (4) and *trans*-[Ru(OAc)₂(CO)(PPh₃)(en)] (**B**) in CD₂Cl₂ at 20 °C.

Figure S14. Control ¹H NMR spectrum (200.1 MHz) of the mixture of $[Ru(OAc)(CO)(PPh_3)(en)]OAc$ (4) and *trans*- $[Ru(OAc)_2(CO)(PPh_3)(en)]$ (B) in CD₂Cl₂ at 20 °C.

Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum (162.0 MHz) of [Ru(OAc)(CO)(PPh₃)(ampy)]OAc (5) in CD₂Cl₂ at 20 °C.

Figure S16. ¹H NMR spectrum (400.1 MHz) of [Ru(OAc)(CO)(PPh₃)(ampy)]OAc (**5**) in CD₂Cl₂ at 20 °C.

Figure S17. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of $[Ru(OAc)(CO)(PPh_3)(ampy)]OAc$ (5) in CD₂Cl₂ at 20 °C.

Figure S18. Effect of the addition of NaOAc to $[Ru(OAc)(CO)(PPh_3)(ampy)]OAc$ (5) in the methyl acetate region of the ¹H NMR spectra in CD₃OD at 20 °C.

Figure S19. Control ${}^{31}P{}^{1}H$ NMR spectrum (81.0 MHz) of the mixture of [Ru(OAc)(CO)(PPh₃)(ampy)]OAc (5) and *trans*-[Ru(OAc)₂(CO)(PPh₃)(ampy)] (**B'**) in CD₂Cl₂ at 20 °C.

Figure S20. Control ¹H NMR spectrum (200.1 MHz) of the mixture of $[Ru(OAc)(CO)(PPh_3)(ampy)]OAc$ (5) and *trans*- $[Ru(OAc)_2(CO)(PPh_3)(ampy)]$ (B') in CD₂Cl₂ at 20 °C.

Figure S21. ³¹P{¹H} NMR spectrum (81.0 MHz) of *trans*-[RuCl₂(CO)(dppb)(PPh₃)] (6) in CD₂Cl₂ at 20 °C.

Figure S22. ¹H NMR spectrum (200.1 MHz) of *trans*-[RuCl₂(CO)(dppb)(PPh₃)] (6) in CD₂Cl₂ at 20 °C.

Figure S23. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of *trans*-[RuCl₂(CO)(dppb)(PPh₃)] (6) in CD₂Cl₂ at 20 °C.

Figure S24. ³¹P{¹H} NMR spectrum (81.0 MHz) of *trans*-[RuCl₂(CO)(dppf)(PPh₃)] (7) in CD₂Cl₂ at 20 °C.

Figure S25. ¹H NMR spectrum (200.1 MHz) of *trans*-[RuCl₂(CO)(dppf)(PPh₃)] (7) in CD₂Cl₂ at 20 °C.

Figure S26. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of *trans*-[RuCl₂(CO)(dppf)(PPh₃)] (7) in CD₂Cl₂ at 20 °C.

Figure S27. ³¹P{¹H} NMR spectrum (162.0 MHz) of *trans*-[RuCl₂(CO)((R)-BINAP)(PPh₃)] (8) in [D8]toluene at 20 °C.

Figure S28. ¹H NMR spectrum (400.1 MHz) of *trans*-[RuCl₂(CO)((R)-BINAP)(PPh₃)] (8) in [D8]toluene at 20 °C.

Figure S29. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of *trans*-[RuCl₂(CO)((R)-BINAP)(PPh₃)] (8) in [D8]toluene at 20 °C.

Figure S30. ³¹P-¹H HMBC 2D NMR spectrum of *trans*-[RuCl₂(CO)((R)-BINAP)(PPh₃)] (8) in [D8]toluene at 20 °C.

Figure S31. ³¹P{¹H} NMR spectrum (162.0 MHz) of *trans*-[RuCl₂(CO)((*S*,*R*)-Josiphos)(PPh₃)] (9) in [D8]toluene at 20 °C.

Figure S32. ¹H NMR spectrum (400.1 MHz) of *trans*-[RuCl₂(CO)((*S*,*R*)-Josiphos)(PPh₃)] (9) in [D8]toluene at 20 °C.

Figure S33. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of *trans*-[RuCl₂(CO)((*S*,*R*)-Josiphos)(PPh₃)] (9) in [D8]toluene at 20 °C.

Figure S34. ³¹P{¹H} NMR spectrum (81.0 MHz) of *trans*-[RuCl₂(CO)((R,R)-Skewphos)(PPh₃)] (10) in CD₂Cl₂ at 20 °C.

Figure S35. ¹H NMR spectrum (200.1 MHz) of *trans*-[RuCl₂(CO)((R,R)-Skewphos)(PPh₃)] (**10**) in CD₂Cl₂ at 20 °C.

Figure S36. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)(dppb)]$ (11) in CD₂Cl₂ at 20 °C.

Figure S37. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)(dppb)]$ (11) in CD₂Cl₂ at - 60 °C.

Figure S38. ${}^{31}P{}^{1}H$ NMR spectrum (81.0 MHz) of [Ru(OAc)₂(CO)(dppb)] (11) in CD₂Cl₂ at - 80 °C.

Figure S39. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)₂(CO)(dppb)] (11) in CD₂Cl₂ at 20 °C.

Figure S40. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)₂(CO)(dppb)] (11) in CD₂Cl₂ at - 80 °C.

Figure S41. ¹³C{¹H} NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)(dppb)]$ (11) in CD₂Cl₂ at 20 °C.

Figure S42. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)(dppb)]$ (11) in CD_2Cl_2 at 20 °C.

Figure S43. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)(dppb)]$ (11) in CD_2Cl_2 at - 80 °C.

Figure S44. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)(dppf)]$ (12) in CD₂Cl₂ at 20 °C.

Figure S45. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)(dppf)]$ (12) in CD₂Cl₂ at - 70 °C.

Figure S46. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)₂(CO)(dppf)] (**12**) in CD₂Cl₂ at 20 °C.

Figure S47. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)₂(CO)(dppf)] (12) in CD₂Cl₂ at - 70 °C.

Figure S48. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)(dppf)]$ (12) in CD_2Cl_2 at 20 °C.

Figure S49. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)(dppf)]$ (12) in CD_2Cl_2 at - 70 °C.

Figure S50. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)((R)-BINAP)]$ (13) in CD_2Cl_2 at 20 °C.

Figure S51. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)((R)-BINAP)]$ (13) in CD_2Cl_2 at - 60 °C.

Figure S52. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)₂(CO)((*R*)-BINAP)] (**13**) in CD₂Cl₂ at 20 °C.

Figure S53. ¹H NMR spectrum (200.1 MHz) of $[Ru(OAc)_2(CO)((R)-BINAP)]$ (13) in CD₂Cl₂ at - 60 °C.

Figure S54. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)((R)-BINAP)]$ (13) in CD₂Cl₂ at - 60 °C.

Figure S55. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) in CD_2Cl_2 at 20 °C.

Figure S56. ³¹P{¹H} NMR spectrum (81.0 MHz) of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) in CD_2Cl_2 at - 60 °C.

Figure S57. ¹H NMR spectrum (200.1 MHz) of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) in CD_2Cl_2 at 20 °C.

Figure S58. ¹H NMR spectrum (200.1 MHz) of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) in CD_2Cl_2 at - 60 °C.

Figure S59. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of $[Ru(OAc)_2(CO)((R,R)-Skewphos)]$ (14) in CD₂Cl₂ at - 60 °C.

Figure S60. ³¹P{¹H} NMR spectrum (81.0 MHz) of [RuCl(CO)(dppb)(en)]Cl (15) in CD₂Cl₂ at 20 $^{\circ}$ C.

Figure S61. ¹H NMR spectrum (200.1 MHz) of [RuCl(CO)(dppb)(en)]Cl (15) in CD₂Cl₂ at 20 °C.

Figure S62. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of [RuCl(CO)(dppb)(en)]Cl (15) in CD_2Cl_2 at 20 °C

Figure S63. ³¹P{¹H} NMR spectrum (81.0 MHz) of [RuCl(CO)(dppf)(en)]Cl (16) in CD_2Cl_2 at 20 °C.

Figure S64. ¹H NMR spectrum (200.1 MHz) of [RuCl(CO)(dppf)(en)]Cl (16) in CD₂Cl₂ at 20 °C.

Figure S65. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of [RuCl(CO)(dppf)(en)]Cl (16) in CD_2Cl_2 at 20 °C.

Figure S66. ³¹P{¹H} NMR spectrum (81.0 MHz) of [Ru(OAc)(CO)(dppb)(en)]OAc (17) in CD₃OD at 20 °C.

Figure S67. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)(CO)(dppb)(en)]OAc (17) in CD₃OD at 20 °C.

Figure S68. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of [Ru(OAc)(CO)(dppb)(en)]OAc (17) in CD₃OD at 20 °C.

Figure S69. ¹⁵N-¹H HSQC 2D NMR spectrum of [Ru(OAc)(CO)(dppb)(en)]OAc (17) in CD₃OD at 20 °C.

Figure S70. ${}^{31}P{}^{1}H$ NMR spectrum (81.0 MHz) of [Ru(OAc)(CO)(dppb)(ampy)]OAc (18)) in [D8]toluene at 20 °C.

Figure S71. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)(CO)(dppb)(ampy)]OAc (18) in [D8]toluene at 20 °C.

Figure S72. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of [Ru(OAc)(CO)(dppb)(ampy)]OAc (18) in [D8]toluene at 20 °C.

Figure S73. ¹H NMR spectrum (400.1 MHz, CD₂Cl₂, 20 °C) which evidences of the formation of a ruthenium monohydride species from [Ru(OAc)(CO)(dppb)(ampy)]OAc (**18**), by treatment with 2 eq. of NaO*i*Pr in 2-propanol.

Figure S74. ³¹P{¹H} NMR spectrum (81.0 MHz) of [Ru(OAc)(CO)(dppf)(en)]OAc (19) in CD_2Cl_2 at 20 °C.

Figure S75. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)(CO)(dppf)(en)]OAc (19) in CD_2Cl_2 at 20 °C.

Figure S76. ¹³C{¹H} PENDANT NMR spectrum (50.3 MHz) of [Ru(OAc)(CO)(dppf)(en)]OAc (19) in CD₂Cl₂ at 20 °C.

Figure S77. ${}^{31}P{}^{1}H$ NMR spectrum (81.0 MHz) of [Ru(OAc)(CO)(dppf)(ampy)]OAc (20) in [D8]toluene at 20 °C.

Figure S78. ¹H NMR spectrum (200.1 MHz) of [Ru(OAc)(CO)(dppf)(ampy)]OAc (20) in [D8]toluene at 20 °C.

Figure S79. ${}^{13}C{}^{1}H$ NMR spectrum (81.0 MHz) of [Ru(OAc)(CO)(dppf)(ampy)]OAc (20) in [D8]toluene at 20 °C.

Entry	Complex	Ligand (5 equiv.)	Time [min]	Conv. ^[a]	TOF ^[b] [h ⁻¹]	e.e. (%)
1	6	en	120	25	-	-
2	7	en	120	44	-	-
3	8	en	120	92	900	22 (S)
4	8	ampy	300	88	300	18 (<i>S</i>)
5	8	(\pm) - <i>i</i> Pr-ampy ^[c]	120	97	1200	25 (S)
6	8	(<i>S</i> , <i>S</i>)-DPEN	120	78	1100	16 (<i>S</i>)
7	9	en	120	74	400	13 (S)
8	9	ampy	120	95	1700	17 (<i>R</i>)
9	9	(\pm) - <i>i</i> Pr-ampy ^[c]	30	97	6700	17 (<i>R</i>)
10	9	(<i>S</i> , <i>S</i>)-DPEN	120	94	700	32 (<i>R</i>)
11	10	en	120	48	-	13 (<i>R</i>)
12	10	ampy	120	86	1800	66(<i>R</i>)
13	10	(R,R)-DPEN	120	85	800	46 (<i>S</i>)
14	10	(<i>S</i> , <i>S</i>)-DPEN	120	46	300	53 (R)
15	11	en	120	85	3700	-
16	12	en	120	46	-	-
17	13	en	30	97	6000	18 (S)
18	13	(\pm) - <i>i</i> Pr-ampy ^[c]	5	97	19000	24 (S)
19	13	(S,S)-DPEN	5	96	12000	19 (<i>S</i>)
20	14	en	30	91	10000	24 (<i>R</i>)
21	14	(R,R)-DPEN	30	97	18000	12 (<i>R</i>)
22	14	(S,S)-DPEN	30	92	15000	26 (R)

Table S1. Further data regarding the catalytic TH of acetophenone (0.1 M) with complexes **6-14** (S/C 1000) in 2-propanol at 82 °C, and in the presence of NaO*i*Pr 2 mol%.

^{*a*} The conversion has been determined by GC analysis. ^{*b*} Turnover frequency (moles of ketone converted to alcohol per mole of catalyst per hour) at 50% conversion. ^{*c*} 2 eq. with respect to the diphosphine precursors.

Entry	Complex	substrate	Time [min]	Conv. ^[a] [%]	
1	1	benzaldehyde	10	11	
2	3	benzaldehyde	10	10	
3	4	benzaldehyde	30	8	
4	5	benzaldehyde	60	14	
5	5	4-bromo-benzaldehyde	60	30	
6	15	benzaldehyde	60	20	
7	16	benzaldehyde	60	25	

Table S2. Further data regarding the catalytic TH of aldehydes and ketones (0.1 M) to alcohols with complexes **1**, **3-5** and **15-16** (S/C 1000) in 2-propanol at 82 °C, and in the presence of 2 mol % NaO*i*Pr.

^aThe conversions has been determined by GC analysis.

Entry	Complex	Substrate	S/C	Time [h]	Conv. ^[a] [%]
1	2	tetralone	10000	16	8
2	2	benzoin	10000	16	5
3	15	tetralone	10000	16	4
4	15	2'-Me-acetophenone	10000	16	28
5	15	4'-NO ₂ -acetophenone	10000	16	1
6	15	benzoin	10000	16	9

Table S3. Further data regarding the catalytic HY (30 bar) of ketones (2.0 M) to alcohols with complexes **2**, **15** and KO*t*Bu (2 mol%) as base in EtOH at 70 °C.

^a The conversions has been determined by GC analysis.