Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

S 1

Synthesis and Reactivity of Boryl Substituted Silaimines

K. Yuvaraj and Cameron Jones*

School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.

Supplementary Information (25 pages)

Contents	1. Experimental	S2
	2. X-Ray Crystallography	S22
	3. References	S25

1. Experimental

General considerations.

All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of high purity dinitrogen. Pentane was distilled over Na/K alloy (50:50), while hexane, toluene and THF were distilled over molten potassium. ¹H, ¹³C{¹H}, ¹¹B{¹H} and ²⁹Si{¹H} NMR spectra were recorded on a Bruker AvanceIII 400 spectrometer. ¹H and ¹³C{¹H} NMR spectra were referenced to the resonances of the solvent used. The ²⁹Si{¹H} and ¹¹B{¹H} NMR spectra were referenced to the external SiMe₄ and BF₃.OEt₂ respectively. Mass spectra were collected using an Agilent Technologies 5975D inert MSD with a solid-state probe. High resolution mass spectra (ESI) were recorded by the Monash Analytical Platform using an Agilent 6220 Accurate Mass LC-TOF system with Agilent 1200 Series HPLC. FTIR spectra were recorded as Nujol mulls, using a Agilent Cary 630 spectrometer operating in attenuated total reflectance (ATR) or transmission modes. Microanalyses were carried out at the Science Centre, London Metropolitan University. Melting points were determined in sealed glass capillaries under dinitrogen, and are uncorrected. The starting materials (HCNDip)₂Si:¹, (HCNBu^r)₂Si:² and (HCNDip)₂BN₃³ were prepared by literature procedures. All other reagents were used as received, except CO₂ gas which was dried over P₂O₅ in prior to use.

Synthesis of (HCNDip)₂Si=N{B(DipNCH)₂} 1. (HCNDip)₂Si: (100 mg, 0.247 mmol) and (HCNDip)₂BN₃ (106 mg, 0.247 mmol) were dissolved in 8 mL of benzene, generating a yellow solution. This was stirred for 10 min before volatiles were removed *in vacuo* and the residue extracted with hexane (5 mL) and filtered. The filtrate was then placed at -30 °C for 3 d, after which time colourless needles of **1** had deposited. These were isolated and a second crop obtained from the mother liquor (172 mg, 86 %). M.p. 228–232 °C; ¹H NMR (400 MHz, C₆D₆) δ 0.99 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 1.05 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 1.12 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 3.14 (sept, *J* = 6.8 Hz, 4H, CH(CH₃)₂), 3.30 (sept, *J* = 6.9 Hz, 4H, CH(CH₃)₂), 5.38 (s, 2H, CH), 5.82 (s, 2H, CH), 7.07-7.20 (m, 12H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 23.9, 24.1, 24.4, 24.6 (CH(CH₃)₂), 28.6, 29.3 (CH(CH₃)₂), 117.9, 118.6 (CH), 123.2, 123.7, 124.0, 126.0, 126.7, 137.5, 141.8, 146.1, 146.9 (ArC); ¹¹B{¹H} NMR (128 MHz, C₆D₆) δ 21.0; ²⁹Si{¹H} NMR (80 MHz, THF-*d*₈) δ -48.0; IR *v*/cm⁻¹ (Nujol): 1449 (m), 1261 (m), 1229 (s), 755 (s), 698 (vs); MS (EI, 70 eV): *m/z* (%) = 805.9 (M⁺, 100), 402.4 ({(HCNDip)₂BNH}⁺, 34); HRMS (ESI): calc. for C₅₂H₇₃BN₅Si (M⁺+H): 8065728, found 806.5680.

Figure S1. ¹H NMR specturm (400 MHz, 298 K, C_6D_6) of 1.

Figure S2. ${}^{13}C{}^{1}H$ NMR specturm (101 MHz, 298 K, C₆D₆) of **1**.

Figure S3. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **1**.

Figure S4. ${}^{11}B{}^{1}H{}$ NMR specturm (128 MHz, 298 K, C_6D_6) of 1.

Figure S5. ²⁹Si $\{^{1}H\}$ NMR specturm (80 MHz, 298 K, THF- d_{8}) of 1.

Synthesis of (HCNBu^{*t*})₂**Si=N{B(DipNCH)**₂**} 2.** (HCNBu^{*t*})₂Si: (92 mg, 0.468 mmol) and (HCNDip)₂BN₃ (201 mg, 0.468 mmol) were dissolved in 8 mL of benzene, yielding a yellow solution. This was stirred for 10 min before volatiles were removed *in vacuo*, the residue extracted with hexane (5 mL), and the extract filtered. The filtrate was then placed at -30 °C for 3d, after which time colourless rods of **2** had deposited. These were isolated and a second crop obtained from the mother liquor (246 mg, 88 %). M.p: 143–146 °C. ¹H NMR (400 MHz, C₆D₆) δ 1.02 (s, 18H, C(CH₃)₃), 1.31 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 1.38 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 3.74 (sept, 4H, CH(CH₃)₂), 5.60 (s, 2H, CH), 6.24 (s, 2H, CH), 7.21-7.23 (m, 6H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 23.8, 25.8 (CH(CH₃)₂), 28.5 (CH(CH₃)₂), 31.1 (C(CH₃)₃), 53.2 (C(CH₃)₃), 110.5, 117.3 (CH), 123.5, 126.3, 127.4, 141.5, 146.6 (ArC); ¹¹B{¹H} NMR (128 MHz, C₆D₆) δ 20.9; ²⁹Si{¹H} NMR (80 MHz, C₆D₆) δ -57.6; IR *v*/cm⁻¹ (Nujol): 1441 (m), 1270 (vs), 1224 (s), 1117 (s), 949 (s), 757 (s); MS (EI, 70 eV): *m/z* (%) = 597.4 (M⁺, 11), 57.0 (Bu^{t+}, 100); anal. calc. for C₃₆H₅₆BN₅Si: C 72.33 %, H 9.44 %, N 11.72%: found: C 72.17 %, H 9.59 %, N 11.61 %.

Figure S7. ${}^{13}C{}^{1}H$ NMR specturm (101 MHz, 298 K, C₆D₆) of **2**.

Figure S8. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **2**.

Figure S9. ¹¹B{¹H} NMR specturm (128 MHz, 298 K, C₆D₆) of **2**.

Figure S10. ²⁹Si{¹H} NMR specturm (80 MHz, 298 K, C₆D₆) of 2.

Synthesis of (HCNDip)₂Si{OC(=O)N[B(DipNCH)₂]} 3. Compound 1 (100 mg, 0.124 mmol) was dissolved in 8 mL of benzene in a Schlenk flask which was cooled to -78 °C, placed under vacuum, then backfilled with CO₂ gas (ca. 50 mL). The reaction mixture was slowly warmed to room temperature, resulting in a solution colour change from yellow to pale yellow. The reaction mixture was stirred for 12h at room temperature, all volatiles then removed in vacuo, and the residue extracted with hexane (5 mL). The extract was filtered and the filtrate placed at -30 °C for 1d, after which time colourless plates of **3** had deposited. These were isolated and a second crop obtained from the mother liquor (76 mg, 72 %). M.p: 191–194 °C; ¹H NMR (400 MHz, C_6D_6) δ 1.11 (d, J = 6.6 Hz, 12H, CH(CH₃)₂), 1.15 (d, J = 6.6 Hz, 12H, CH(CH₃)₂), 1.19 (d, J = 6.8 Hz, 12H, CH(CH₃)₂), 1.26 (d, J = 7.1 Hz, 12H, CH(CH₃)₂), 2.82-3.08 (m, 4H, CH(CH₃)₂), 3.24 (m, 4H, $CH(CH_3)_2$, 5.42 (s, 2H, CH), 5.74 (s, 2H, CH), 7.06-7.23 (m, 12H, ArH); ${}^{13}C{}^{1}H$ NMR (101) MHz, C₆D₆) δ 24.3, 26.3, 26.5, 26.8 (CH(CH₃)₂), 28.5, 28.8, 28.9, 29.0 (CH(CH₃)₂), 120.5, 120.9 (CH), 123.4, 124.5, 124.9, 125.5, 137.4, 139.6, 145.1, 146.8, 148.0, 148.7, 151.7 (ArC); ¹¹B{¹H} NMR (128 MHz, C₆D₆) δ 21.0; ²⁹Si{¹H} NMR (80 MHz, C₆D₆) δ -49.2; IR *v*/cm⁻¹ (Nujol): 1804 (s, CO str.), 1255 (m), 1228 (m), 1198 (s), 1102 (s), 1059 (m), 950 (s), 935 (s), 805 (s,) 760 (vs); MS (EI, 70 eV): m/z (%) = 429.4 ({(HCNDip)_2BNCO}, 52); anal. calc. for C₅₃H₇₂BN₅SiO₂: C 74.88 %, H 8.54 %, N 8.24 %: found: C 74.60 %, H 8.45 %, N 8.03 %.

S 8

Figure S11. ¹H NMR specturm (400 MHz, 298 K, C_6D_6) of 3.

Figure S12. ¹³C{¹H} NMR specturm (101 MHz, 298 K, C₆D₆) of **3**.

Figure S13. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **3**.

Figure S14. ¹¹B{¹H} NMR specturm (128 MHz, 298 K, C₆D₆) of **3**.

Figure S15. ²⁹Si{¹H} NMR specturm (80 MHz, 298 K, C₆D₆) of 3.

Synthesis of (HCNDip)₂B(NCO) 4. Compound **2** (120 mg, 0.100 mmol) was dissolved in 8 mL of benzene in a Schlenk flask, which was cooled to -78 °C, placed under vacuum, the backfilled with *ca.* 50 mL CO₂ gas. The reaction mixture was slowly warmed to room temperature, then placed in an oil bath at 80 °C for 14h, resulting in a slow colour change from yellow to pale yellow. All the volatiles were then removed *in vacuo* and the residue extracted with hexane (5 mL). The extract was filtered, and the filtrate placed at -30 °C for 4h, after which time colourless blocks of **4** had deposited. These were isolated and a second crop obtained from the mother liquor (36 mg, 41 %) M.p: 105–108 °C; ¹H NMR (400 MHz, C₆D₆) δ 1.19 (d, *J* = 7.0 Hz, 12H, CH(CH₃)₂), 1.26 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 3.14 (s, *J* = 7.0 Hz, 4H, CH(CH₃)₂), 5.95 (s, 2H, CH), 7.12-7.21 (m, 6H, Ar*H*); ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 24.0, 24.3 (CH(CH₃)₂), 28.8 (CH(CH₃)₂), 118.2 (CH), 123.9, 127.9, 128.1, 128.4, 136.8, 146.4 (ArC); ¹¹B{¹H} NMR (128 MHz, C₆D₆) δ 17.7; IR *v*/cm⁻¹ (Nujol): 2301 (vs), 1535 (m), 1406 (vs), 1275 (s), 1116 (s), 1084 (s), 1059 (m), 937 (m), 910 (s), 759 (vs); MS (EI, 70 eV): *m/z* (%) = 429.5 (M⁺, 100); anal. calc. for C₂₇H₃₆BN₃O: C 75.52 %, H 8.45 %, N 9.79 %: found: C 75.21 %, H 8.69 %, N 9.80 %.

Figure S17. ¹³C{¹H} NMR specturm (101 MHz, 298 K, C₆D₆) of **4**.

Figure S18. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **4**.

Figure S19. ¹¹B{¹H} NMR specturm (128 MHz, 298 K, C₆D₆) of **4**.

Synthesis of (HCNDip)₂**Si(OH)–(H)N{B(DipNCH)**₂**} 5.** Compound **1** (100 mg, 0.124 mmol) was dissolved in benzene (4 mL) and 2.5 mL of an 0.05 M solution of water in THF was added, resulting in a solution colour change from yellow to pale yellow. The solution was stirred for 1h, volatiles removed *in vacuo*, and the residue extracted with hexane (5 mL). The extract was filtered and the filtrate placed at room temperature for 3d, after which colourless needles of 5 had deposited. These were isolated and a second crop obtained from the mother liquor (72 mg, 70 %); M.p: >260 °C. ¹H NMR (400 MHz, C₆D₆) δ 0.93 (m, 12H, CH(CH₃)₂), 1.11 (d, *J* = 6.8 Hz, 12H, CH(CH₃)₂), 1.14-1.22 (m, 24H, CH(CH₃)₂), 2.09 (s, 1H, NH), 2.26 (s, 1H, SiOH), 3.09 (sept, *J* = 6.9 Hz, 4H, CH(CH₃)₂), 3.42 (sept, 2H, *J* = 6.9 Hz, CH(CH₃)₂), 3.69 (sept, *J* = 6.8 Hz, 2H, CH(CH₃)₂), 5.45 (s, 2H, CH), 5.75 (s, 2H, CH), 7.04-7.18 (m, 12H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 23.3, 23.3, 23.9, 25.3, 25.8, 26.1 (CH(CH₃)₂), 28.1, 28.5, 28.7 (CH(CH₃)₂), 118.8, 118.9 (CH), 123.9, 124.1, 124.4, 126.9, 127.9, 128.5, 140.1, 147.2, 147.7, 148.6 (ArC); ¹¹B{¹H} NMR (128 MHz, C₆D₆) δ 22.4; ²⁹Si{¹H} NMR (80 MHz, C₆D₆) δ -51.9; IR ν/cm⁻¹ (Nujol): 3572 (br), 3348 (m), 1206 (s), 1069 (s), 980 (s), 698 (s); MS (EI, 70 eV): *m/z* (%) = 823.8 (M⁺, 42); HRMS (ESI): calc. for C₅₂H₇₃BN₅OSi (M⁺-H): 822.5677, found 822.5668.

 7,7,7
 7,7,7

 7,7,7
 7,7,7

 7,7,7
 7,7,1

 7,7,7
 7,7

 7,7,7
 7,7

 7,7,7
 7,7

 7,7,7
 7,7

 7,7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7,7
 7,7

 7

Figure S20. ¹H NMR specturm (400 MHz, 298 K, C₆D₆) of **5**.

Figure S21. ${}^{13}C{}^{1}H$ NMR specturm (101 MHz, 298 K, C₆D₆) of **5**.

Figure S22. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **5**.

Figure S24. ²⁹Si{¹H} NMR specturm (80 MHz, 298 K, C₆D₆) of 5.

Synthesis of (HCNBu^{*t*})₂Si(OH)–(H)N{B(DipNCH)₂} 6. Compound 2 (90 mg, 0.150 mmol) was dissolved in benzene (4 mL), and 3 mL of an 0.05 M solution of water in THF was added. This resulted in a solution colour change from yellow to pale yellow. The mixture was allowed to stir for 1h, then volatiles were removed *in vacuo* and the residue was extracted with hexane (5 mL). The extract was filtered and the filtrate placed at room temperature for 4d, after which time colourless crystals of 6 had deposited. These were isolated and a second crop obtained from the mother liquor (66 mg, 71 %); M.p: 154–159 °C; ¹H NMR (400 MHz, C₆D₆) δ 1.19 (d, *J* = 6.8 Hz, 12H, CH(CH₃)₂), 1.26 (s, 18H, C(CH₃)₃), 1.36 (d, *J* = 6.9 Hz, 12H, CH(CH₃)₂), 1.90 (s, 1H, NH), 1.94 (s, 1H, SiOH), 3.45 (sept, *J* = 6.8 Hz, 4H, CH(CH₃)₂), 5.65 (s, 2H, CH), 6.00 (s, 2H, CH), 7.13-7.19 (m, 6H, ArH); ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 23.1, 25.9 (CH(CH₃)₂), 28.2 (CH(CH₃)₂), 30.8 (C(CH₃)₃), 50.7 (C(CH₃)₃), 110.0, 118.2 (CH), 123.9, 127.4, 138.4, 146.9 (ArC); ¹¹B{¹H} NMR

(128 MHz, C_6D_6) δ 22.3; ²⁹Si{¹H} NMR (80 MHz, C_6D_6) δ -47.4; IR ν/cm^{-1} (Nujol): 3579 (br), 3335 (m), 1229 (s), 1096 (s), 909 (m), 761 (s); MS (EI, 70 eV): m/z (%) = 615.5 (M⁺, 36), 57.1 (Bu^{t+}, 100); anal. calc. for $C_{36}H_{58}BN_5OSi$: C 70.22 %, H 9.49 %, N 11.37 %: found: C 70.01 %, H 9.34%, N 11.12 %.

Figure S26. ¹³C{¹H} NMR specturm (101 MHz, 298 K, C₆D₆) of **6**.

Figure S27. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **6**.

Figure S28. ¹¹B{¹H} NMR specturm (128 MHz, 298 K, C₆D₆) of **6**.

Figure S29. ²⁹Si{¹H} NMR specturm (80 MHz, 298 K, C₆D₆) of **6**.

Synthesis of (HCNBu')₂Si{[HCNDip)₂B]NN}₂ 7. Compound **2** (120 mg, 0.100 mmol) and (HCNDip)₂BN₃ (89 mg, 0.200 mmol) were dissolved in benzene (8 mL), and the reaction mixture heated at 80 °C for 6 d, leading to the slow formation of **7**. Volatiles were then removed *in vacuo* and the residue was extracted with hexane (5 mL). The extract was filtered and the filtrate placed at -30 °C for 3d, after which colourless crystals of **7** had deposited. These were isolated and a second crop obtained from the mother liquor (140 mg, 68 %). M.p: 207–210 °C; ¹H NMR (400 MHz, C₆D₆) δ 0.79 (s, 18H, C(*CH*₃)₃), 1.18 (d, *J* = 6.7 Hz, 24H, CH(*CH*₃)₂), 1.21 (d, *J* = 6.8 Hz, 24H, CH(*CH*₃)₂), 3.15 (sept, *J* = 7.0 Hz, 8H, C*H*(CH₃)₂), 5.23 (s, 2H, C*H*), 5.92 (s, 4H, C*H*), 7.12-7.24 (m, 12H, Ar*H*); ¹³C{¹H} NMR (101 MHz, C₆D₆) δ 23.0, 26.7 (CH(*C*H₃)₂), 28.8 (CH(CH₃)₂), 31.1 (C(*C*H₃)₃), 109.7, 120.9 (CH), 123.5, 127.4, 127.9, 140.9 (ArC); ¹¹B{¹H} NMR (128 MHz, C₆D₆) δ 23.6; ²⁹Si{¹H} NMR (80 MHz, C₆D₆) δ -43.0; IR *v*/cm⁻¹ (Nujol): 1401 (vs), 1250 (vs), 1152 (m), 1071 (m), 980 (m), 879 (vs), 758 (s); MS (EI, 70 eV): *m/z* (%) = 429.4 ((HCNDip)₂BNsi⁺, 81), ((HCNDip)₂B⁺, 65), 57.2 (Bu^{t+}, 100); HRMS (ESI/APCI): calc. for C₆₂H₉₃B₂N₁₀Si (M⁺+H): 1027.7540, found 1027.7356.

Figure S30. ¹H NMR specturm (400 MHz, 298 K, C₆D₆) of **7**.

Figure S31. ${}^{13}C{}^{1}H$ NMR specturm (101 MHz, 298 K, C_6D_6) of 7.

S 20

Figure S32. HMQC specturm (¹H: 400 MHz; ¹³C: 101 MHz, 298 K, C₆D₆) of **7**.

Figure S33. ¹¹B{¹H} NMR specturm (128 MHz, 298 K, C₆D₆) of **7**.

Figure S34. ²⁹Si{¹H} NMR specturm (80 MHz, 298 K, C₆D₆) of **7**.

2. X-Ray Crystallography

Crystals of 1-7 suitable for X-ray structural determination were mounted in silicone oil. Crystallographic measurements were made using a Rigaku Xtalab Synergy Dualflex using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) or Cu K α radiation (1.54180 Å), or the MX2 beamline of the Australian Synchrotron ($\lambda = 0.71090$ Å). The software package Blu-Ice⁴ was used for synchrotron data acquisition, while the program XDS⁵ was employed for synchrotron data reduction.. All structures were solved by direct methods and refined on F² by full matrix least squares (SHELX-16⁶) using all unique data. Hydrogen atoms are typically included in calculated positions (riding model). Crystal data, details of data collections and refinements for all structures can be found in their CIF files and are summarized in Table S1.

	$1 (hexane)_{0.5}$	2	3	4
empirical formula	C55H79BN5Si	C ₃₆ H ₅₆ BN ₅ Si	$C_{53}H_{72}BN_5O_2Si$	C27H36BN3O
formula weight	849.13	597.75	850.05	429.40
crystal system	Triclinic	Orthorhombic	Orthorhombic	Monoclinic
space group	<i>P</i> -1	Pbca	$P2_{1}2_{1}2_{1}$	$P2_{1}/c$
a (Å)	12.776(3)	20.0450(5)	9.94260(10)	12.69160(10)
b (Å)	20.405(4)	12.0661(2)	20.1639(3)	9.19770(10)
c (Å)	21.920(4)	29.3699(6)	24.4987(3)	22.4558(2)
α (°)	114.35(3)	90	90	90
β (°)	91.65(3)	90	90	96.8040(10)
γ (°)	93.08(3)	90	90	90
V (Å ³)	5191(2)	7103.6(3)	4911.54(11)	2602.88(4)
Z	4	8	4	4
T (K)	100(2)	123(2)	123(2)	123(2)
ρ_{calcd} (g·cm ³)	1.087	1.118	1.150	1.096
μ (mm ⁻¹)	0.084	0.805	0.757	0.509
F(000)	1852	2608	1840	928
reflns collected	19415	36803	92483	26554
unique reflns	19256	6608	9123	4838
R _{int}	0.0796	0.0982	0.1196	0.0386
R1 [I > $2\sigma(I)$]	0.0612	0.0770	0.0485	0.0445
wR2 (all data)	0.1724	0.2121	0.1269	0.1166
largest peak and hole $(e \cdot Å^{-3})$	0.480, -0.410	0.914, -0.293	0.359, -0.413	0.308, -0.294
CCDC no	1936048	1936049	1936051	1936047

 Table S1. Crystal data for 1-7.

	5	6	7 (benzene) _{1.5}
empirical formula	C ₅₂ H ₇₄ BN ₅ OSi	C ₃₆ H ₅₈ BN ₅ OSi	$C_{71}H_{101}B_2N_{10}Si$
formula weight	824.06	615.77	1144.32
crystal system	Monoclinic	Monoclinic	Triclinic
space group	$P2_{1}/c$	$P2_1/n$	<i>P</i> -1
a (Å)	19.7295(15)	12.6357(2)	12.25400(10)
b (Å)	12.4632(9)	20.6176(3)	13.34060(10)
c (Å)	19.9618(15)	14.6141(3)	23.45660(10)
α (°)	90	90	76.3140(10)
β (°)	96.766(4)	99.935(2)	81.4680(10)
γ (°)	90	90	66.8400(10)
$V(Å^3)$	4874.3(6)	3750.14(11)	3418.88(5)
Z	4	4	2
T (K)	123(2)	123(2)	123(2)
$\rho_{calcd} (g \cdot cm^3)$	1.123	1.091	1.112
μ (mm ⁻¹)	0.090	0.795	0.657
F(000)	1792	1344	1242
reflns collected	26161	33263	67124
unique reflns	9035	8701	12702
R _{int}	0.1697	0.0584	0.0526
R1 $[I > 2\sigma(I)]$	0.1066	0.0686	0.0428
wR2 (all data)	0.3216	0.2249	0.1143
largest peak and	1.070, -1.024	0.716, -0.426	0.528, -0.353
hole (e·Å ⁻³)			
CCDC no.	1936046	1936050	1936052

Table S1 (contd.). Crystal data for 1-7.

Figure S35. ORTEP diagram of compound **6** (25% thermal ellipsoids; hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): Si(1)-O(1) 1.6301(18), Si(1)-N(5) 1.715(2), N(5)-B(1) 1.445(3), O(1)-Si(1)-N(5)1 07.78(10), B(1)-N(5)-Si(1) 139.63(17).

3. References

- P. Zark, A. Schafer, A. Mitra, D. Haase, W. Saak, R. West, T. Muller, *J. Organomet. Chem.*, 2010, **695**, 398.
- M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc., 1998, 120, 12714.
- H. Braunschweig, M. A. Celik, T. Dellermann, G. Frenking, K. Hammond, F. Hupp, H. Kelch, I. Krummenacher, F. Lindl, L. Mailander, J. H. Messig, A. Ruppert, *Chem. Eur. J.*, 2017, 23, 8006.
- T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Rad., 2002, 9, 401.
- 5. W. J. Kabsch, Appl. Crystallogr., 1993, 26, 795.
- 6. G.M. Sheldrick, *SHELX-16*, University of Göttingen, 2016.

S 25