## Supporting Information

# Combination furoxan and 1,2,4-oxadiazole for the generation of high-performance energetic materials.

Hualin Xiong, Hongwei Yang, Caijin Lei, Pengjiu Yang, Wei Hu and Guangbin Cheng \*

School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094, P. R. China

Email: gcheng@mail.njust.edu.cn

**Table of Contents** 

| 1. | Computational details                                                      | 1-2   |
|----|----------------------------------------------------------------------------|-------|
| 2. | Crystallographic data                                                      | 3-7   |
| 3. | <sup>1</sup> H NMR and <sup>13</sup> C NMR of compounds 2-4, 3a-d and 4a-c | 8-16  |
| 4. | The DSC plots of compounds 3, 4, 3a-d, 4a-c, RDX, HMX and CL-20            | 17-21 |
| 5. | Reference                                                                  | 22    |

#### **1.** Computational details

Computations were performed by using the Gaussian09 suite of programs.<sup>1</sup> The elementary geometric optimization and the frequency analysis were performed at the level of the Becke three parameter, Lee-Yan-Parr (B3LYP) functional with the 6-311+G\*\* basis set.<sup>2-4</sup> All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. Atomization energies were calculated by the CBS-4M.<sup>5</sup> All the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies.

The predictions of heats of formation (HOF) of compounds used the hybrid DFTB3LYP methods with the 6-311+G\*\* basis set through designed isodesmic reactions. The isodesmic reaction processes, that is, the number of each kind of formal bond is conserved, were used with the application of the bond separation reaction (BSR) rules. The molecule was broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions used to derive the HOF shown in Scheme S1-S4.

Scheme 1. The isodesmic reactions for calculating heat of formation for 3.

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Scheme 2. The isodesmic reactions for calculating heat of formation for the anion of 3.

$$\begin{array}{c} -O - \frac{1}{N} \stackrel{O}{\longrightarrow} N \\ N = N \\ O_2 N - N \\ H \\ O \end{array} \stackrel{O}{\longrightarrow} N \\ N \\ O_2 N - N \\ O_2 N \\ O_2 N - N \\ O_2 N$$

Scheme 3. The isodesmic reactions for calculating heat of formation for 4

$$\begin{array}{c} -O_{-N}^{+,O}N \\ N \\ N \\ O_{2}N \\ O_{2}$$

**Scheme 4.** The isodesmic reactions for calculating heat of formation for anion of **3**.

The change of enthalpy for the reactions at 298K can be expressed by Equation (1):

$$\Delta H_{298} = \Sigma \Delta_{\rm f} H_{\rm P} - \Sigma \Delta_{\rm f} H_{\rm R} \tag{1}$$

Where  $\Sigma \Delta_f H_P$  and  $\Sigma \Delta_f H_R$  are the HOF of t,e reactants and products at 298 K, respectively, and  $\Delta H_{298}$  can be calculated from the following expression in Equation (2):

$$\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_{\rm T} + \Delta nRT \tag{2}$$

where  $\Delta E_0$  is the change in total energy between the products and the reactants at 0 K;  $\Delta ZPE$  is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K;  $\Delta H_T$  is the thermal correction from 0 to 298 K. The  $\Delta(PV)$  value in Equation(2) is the *PV* work term. It equals  $\Delta nRT$  for the reactions of an ideal gas. For the isodesmic reactions  $\Delta n = 0$ , so  $\Delta(PV) = 0$ . On the left side of Equation (2), apart from target compound all the others are called reference

compounds. The HOF of reference compounds are available either from experiments or from the high level computing such as CBS-4M.

Based on a Born-Haber energy cycle (Scheme S5), the heat of formation of a salt can be simplified by Equation (3):

 $\Delta H_{\rm f}^{\circ}(\text{ionic salt, 298 K}) = \Delta H_{\rm f}^{\circ}(\text{cation, 298 K}) + \Delta H_{\rm f}^{\circ}(\text{anion, 298 K}) - \Delta H_{\rm L}$ (3)



#### Scheme S5 Born-Haber cycle for the formation of energetic salts

where  $\Delta H_{\rm L}$  is the lattice energy of the salt which could be predicted by the formula suggested by Jenkins et al.<sup>4</sup> as given in Equation (4):

 $\Delta H_{\rm L} = U_{\rm POT} + [p(nM/2-2) + q(nX/2-2)]RT \qquad (4)$ 

where  $n_M$  and  $n_X$  depend on the nature of the ions Mp<sup>+</sup> and Xq<sup>-</sup>, respectively, and are equal to 3 for monatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions. The equation for lattice potential energy  $U_{POT}$  takes the form of equation (5):

$$U_{\text{POT}}(\text{kJ mol}^{-1}) = \gamma (\rho_m / M_m)^{1/3} + \delta$$
(5)

where  $\rho_m$  is the density (g cm<sup>-3</sup>),  $M_m$  is the chemical formula mass of the ionic material and the coefficients  $\gamma$  (kJ ·mol<sup>-1</sup>cm) and  $\delta$  (kJ mol<sup>-1</sup>) are 8375.6 and -178.8, respectively.

**Table S1.** Calculated zero-point energy (ZPE), thermal correction to enthalpy  $(H_T)$ , total energy  $(E_0)$  and heats of formation (HOF)

| Compound                        | E <sub>0</sub> / a.u. | $ZPE / kJ mol^{-1}$ | $\varDelta H_T / kJ mol^{-1}$ | HOF/kJ mol <sup>-1</sup> |
|---------------------------------|-----------------------|---------------------|-------------------------------|--------------------------|
| 3                               | -1455.301011          | 380.05              | 57.53                         | 633.44                   |
| 4                               | -1824.554989          | 451.4               | 73.23                         | 1241.14                  |
| CH <sub>4</sub>                 | -40.5339263           | 112.26              | 10.04                         | -74.60                   |
| NH <sub>3</sub>                 | -56.5826356           | 86.27               | 10.05                         | -45.9                    |
| furoxan                         | -337.3042877          | 124.09              | 14.34                         | 224.73                   |
| 1,2,4- oxadiazole               | -262.1529348          | 116.9               | 11.67                         | 99.8                     |
| NH <sub>2</sub> NO <sub>2</sub> | -261.1248168          | 98.79               | 12.39                         | -3.9                     |
| CH <sub>3</sub> NO <sub>2</sub> | -245.0915559          | 124.93              | 11.60                         | -80.80                   |
| CH <sub>3</sub> CH <sub>3</sub> | -79.8565413           | 187.31              | 11.79                         | -84.01                   |
| NH <sup>-</sup> NO <sub>2</sub> | -260.5730748          | 65.76               | 11.37                         | -120.22                  |
| NHNH                            | -110.679524           | 70.35               | 10.03                         | 194.97                   |
| CH <sub>3</sub> NH <sub>2</sub> | -95.8938402           | 160.78              | 11.64                         | -22.5                    |
| 1,2,4-oxadiazol-5(4H)-one       | -337.4295337          | 128.36              | 14.48                         | -128.96                  |
| 1,2,4-oxadiazol-5-one           |                       |                     |                               | 295 12                   |
| anion                           | -336.894443           | 95.94               | 13.5                          | -283.12                  |

## 2. Crystallographic data

| Empirical formula                   | $\frac{1}{C_8H_2N_{10}O_8} CH_3COCH_3$ | $C_8 H_8 N_{16} O_{10} 2H_2 O$ |
|-------------------------------------|----------------------------------------|--------------------------------|
| Formula weight                      | 424.27                                 | 524.34                         |
| Temperature/K                       | 100                                    | 173                            |
| Crystal system                      | monoclinic                             | monoclinic                     |
| Space group                         | $P2_1/c$                               | C2/c                           |
| a/Å                                 | 14.572(3)                              | 29.577(3)                      |
| b/Å                                 | 11.493(2)                              | 5.0295(4)                      |
| c/Å                                 | 9.5435(18)                             | 14.2565(12)                    |
| α/°                                 | 90                                     | 90                             |
| β/°                                 | 98.872(7)                              | 92.983(3)                      |
| $\gamma/^{\circ}$                   | 90                                     | 90                             |
| Volume/Å <sup>3</sup>               | 1579.1(5)                              | 2117.9(3)                      |
| Z                                   | 4                                      | 4                              |
| $\rho_{calc} mg/mm^3$               | 1.785                                  | 1.644                          |
| m/mm <sup>-1</sup>                  | 0.157                                  | 0.152                          |
| F(000)                              | 864.0                                  | 1072.0                         |
| Crystal size/mm <sup>3</sup>        | 0.12	imes 0.08	imes 0.05               | 0.14 x 0.08 x 0.05             |
| $2\Theta$ range for data collection | 4.534 to 52.894                        | 3.111 to 25.020                |
| Index ranges                        | $-18 \le h \le 17, -12 \le k \le 14,$  | -33<=h<=34,-5<=k<=5,           |
|                                     | $-11 \le 1 \le 11$                     | -16<=l<=16                     |
| Reflections collected               | 9208                                   | 6910                           |
| Independent reflections             | 3204 $[R_{int} = 0.0538, R_{sigma} =$  | 1836 [ $R_{int} = 0.0624$ ]    |
|                                     | 0.0614]                                |                                |
| Data/restraints/parameters          | 3204/0/273                             | 1836 / 22 / 181                |
| Goodness-of-fit on F <sup>2</sup>   | 0.953                                  | 1.169                          |
| Final R indexes [I>= $2\sigma$ (I)] | 0.0465, 0.1190                         | 0.0691, 0.1790                 |
| Final R indexes [all data]          | 0.0777, 0.1532                         | 0.1134, 0.2079                 |
| CCDC                                | 1936651                                | 1825381                        |

Table S2 Crystallographic data for compounds 3 and 4a

Table S3 Selected bond lengths [Å] and angles [ ] for 3

|        |          | <b>U U</b> |          |  |
|--------|----------|------------|----------|--|
| 01-N3  | 1.454(3) | O8-N7      | 1.346(3) |  |
| O1-N4  | 1.359(3) | O8-N8      | 1.481(3) |  |
| O2-N3  | 1.219(3) | O9-C10     | 1.231(3) |  |
| O3-N1  | 1.418(3) | N1-C2      | 1.302(3) |  |
| O3-C1  | 1.370(3) | N2-C2      | 1.359(3) |  |
| O4-C1  | 1.201(3) | N2-C1      | 1.365(3) |  |
| O5-C8  | 1.197(3) | N3-C3      | 1.326(3) |  |
| O6-N9  | 1.421(3) | N4-C4      | 1.311(3) |  |
| O6-C8  | 1.363(3) | N5-C4      | 1.422(3) |  |
| O7-N8  | 1.211(3) | N5-N6      | 1.254(3) |  |
| N6 -C5 | 1.396(3) | C5 -C6     | 1.431(4) |  |

| N7 -C5        | 1.311(3)   | C6 -C7        | 1.444(4)   |  |
|---------------|------------|---------------|------------|--|
| N8 -C6        | 1.329(3)   | C9 -C10       | 1.491(4)   |  |
| N9 -C7        | 1.300(3)   | C10-C11       | 1.489(4)   |  |
| N10-C7        | 1.362(3)   | С9 -Н9А       | 0.9800     |  |
| N10-C8        | 1.372(3)   | С9 -Н9В       | 0.9800     |  |
| N2 -H2        | 0.8800     | С9 -Н9С       | 0.9800     |  |
| N10-H10       | 0.8800     | C11-H11A      | 0.9800     |  |
| C2 -C3        | 1.440(3)   | C11-H11B      | 0.9800     |  |
| C3 -C4        | 1.412(3)   | C11-H11C      | 0.9800     |  |
| N3-O1 -N4     | 108.33(16) | N3 -C3 -C4    | 106.60(19) |  |
| N1-O3 -C1     | 109.28(18) | C2 -C3 -C4    | 131.8(2)   |  |
| N9-O6 -C8     | 109.80(19) | N3 -C3 -C2    | 121.6(2)   |  |
| N7-O8 -N8     | 107.62(17) | N5 -C4 -C3    | 124.5(2)   |  |
| O3-N1 -C2     | 104.36(19) | N4 -C4 -N5    | 123.5(2)   |  |
| C1-N2 -C2     | 107.3(2)   | N4 -C4 -C3    | 112.0(2)   |  |
| O1-N3 -O2     | 117.98(19) | N6 -C5 -C6    | 136.1(2)   |  |
| O1-N3 -C3     | 106.44(18) | N7 -C5 -C6    | 112.0(2)   |  |
| O2-N3 -C3     | 135.6(2)   | N6 -C5 -N7    | 111.9(2)   |  |
| O1-N4 -C4     | 106.65(19) | N8 -C6 -C5    | 105.8(2)   |  |
| N6-N5 -C4     | 111.0(2)   | N8 -C6 -C7    | 117.9(2)   |  |
| N5-N6 -C5     | 116.1(2)   | C5 -C6 -C7    | 136.3(2)   |  |
| O8-N7 -C5     | 107.9(2)   | N9 -C7 -N10   | 112.4(2)   |  |
| O7-N8 -O8     | 117.14(19) | N9 -C7 -C6    | 121.6(2)   |  |
| O7-N8 -C6     | 136.0(2)   | N10-C7 -C6    | 125.9(2)   |  |
| O8-N8 -C6     | 106.8(2)   | O5 -C8 -N10   | 130.6(2)   |  |
| O6-N9 -C7     | 104.5(2)   | O6 -C8 -N10   | 105.6(2)   |  |
| C7-N10-C8     | 107.7(2)   | 05 -C8 -O6    | 123.8(2)   |  |
| C2-N2 -H2     | 126.00     | O9 -C10-C9    | 121.9(3)   |  |
| C1-N2 -H2     | 126.00     | O9 -C10-C11   | 120.1(2)   |  |
| C7-N10-H10    | 126.00     | C9 -C10-C11   | 118.0(2)   |  |
| C8-N10-H10    | 126.00     | С10-С9-Н9А    | 109.00     |  |
| O3-C1 -O4     | 123.1(2)   | С10-С9-Н9В    | 109.00     |  |
| O3-C1 -N2     | 106.2(2)   | С10-С9-Н9С    | 109.00     |  |
| O4-C1 -N2     | 130.7(2)   | H9A-C9 -H9B   | 109.00     |  |
| N1-C2 -N2     | 113.0(2)   | Н9А-С9-Н9С    | 110.00     |  |
| N1-C2 -C3     | 121.2(2)   | Н9В-С9-Н9С    | 110.00     |  |
| N2-C2 -C3     | 125.8(2)   | C10-C11-H11A  | 109.00     |  |
| C10-C11-H11B  | 110.00     | H11A-C11-H11C | 109.00     |  |
| C10-C11-H11C  | 109.00     | H11B-C11-H11C | 109.00     |  |
| H11A-C11-H11B | 109.00     |               |            |  |

 Table S4 Selected torsion angles for [ ] 3

| N4-O1-N3-O2 | -178.23(19) | N5-N6 -C5-C6 | -2.3(4)    |  |
|-------------|-------------|--------------|------------|--|
| N4-01-N3-C3 | 0.8(2)      | 08-N7 -C5-N6 | 177.47(19) |  |

| N3-O1-N4-C4  | -0.5(2)   | 08-N7 -C5-C6  | -0.9(3)   |  |
|--------------|-----------|---------------|-----------|--|
| C1-O3-N1-C2  | 0.4(2)    | 07-N8 -C6-C5  | 178.6(3)  |  |
| N1-O3-C1-O4  | 177.1(2)  | O7-N8 -C6-C7  | 0.9(4)    |  |
| N1-O3-C1-N2  | -0.5(2)   | 08-N8 -C6-C5  | -0.5(3)   |  |
| C8-O6-N9-C7  | 0.8(3)    | O8-N8 -C6-C7  | -178.2(2) |  |
| N9-O6-C8-O5  | 178.9(2)  | O6-N9 -C7-N10 | -1.0(3)   |  |
| N9-O6-C8-N10 | -0.3(3)   | O6-N9 -C7-C6  | -179.1(2) |  |
| N8-O8-N7-C5  | 0.6(3)    | C8-N10-C7-N9  | 0.9(3)    |  |
| N7-O8-N8-O7  | -179.3(2) | C8-N10-C7-C6  | 178.9(2)  |  |
| N7-O8-N8-C6  | 0.0(2)    | C7-N10-C8-O5  | -179.5(3) |  |
| O3-N1-C2-N2  | -0.1(3)   | C7-N10-C8-O6  | -0.3(3)   |  |
| O3-N1-C2-C3  | -178.4(2) | N1-C2 -C3-N3  | 177.9(2)  |  |
| C2-N2-C1-O3  | 0.4(3)    | N1-C2 -C3-C4  | -1.8(4)   |  |
| C2-N2-C1-O4  | -176.9(3) | N2-C2 -C3-N3  | -0.2(4)   |  |
| C1-N2-C2-N1  | -0.2(3)   | N2-C2 -C3-C4  | -179.8(2) |  |
| C1-N2-C2-C3  | 178.0(2)  | N3-C3 -C4-N4  | 0.6(3)    |  |
| O1-N3-C3-C2  | 179.5(2)  | N3-C3 -C4-N5  | -178.5(2) |  |
| O1-N3-C3-C4  | -0.8(2)   | C2-C3 -C4-N4  | -179.7(2) |  |
| O2-N3-C3-C2  | -1.7(4)   | C2-C3 -C4-N5  | 1.2(4)    |  |
| O2-N3-C3-C4  | 178.0(3)  | N6-C5 -C6-N8  | -176.9(3) |  |
| O1-N4-C4-N5  | 179.0(2)  | N6-C5 -C6-C7  | 0.1(5)    |  |
| O1-N4-C4-C3  | 0.0(3)    | N7-C5 -C6-N8  | 0.9(3)    |  |
| C4-N5-N6-C5  | 179.1(2)  | N7-C5 -C6-C7  | 177.9(3)  |  |
| N6-N5-C4-N4  | 3.9(3)    | N8-C6 -C7-N9  | 1.1(4)    |  |
| N6-N5-C4-C3  | -177.2(2) | N8-C6 -C7-N10 | -176.7(2) |  |
| N5-N6-C5-N7  | 179.8(2)  | C5-C6 -C7-N9  | -175.7(3) |  |
| C5-C6-C7-N10 | 6.5(5)    |               |           |  |

 Table S5 Hydrogen bonds for [Å and ] 3

|                                | iubie be i | iyarogen bonas for f | l'i alla je |           |
|--------------------------------|------------|----------------------|-------------|-----------|
| D—H ···A                       | d(D-H)∕ Å  | d(HA)/ Å             | d(DA)/ Å    | <(DHA)/ ° |
| N2-H2 ····O2                   | 0.8800     | 2.4200               | 2.924(3)    | 117.00    |
| N2 -H2 ····O9 <sup>i</sup>     | 0.8800     | 1.8900               | 2.709(3)    | 154.00    |
| N10-H10 …N1                    | 0.8800     | 2.2600               | 2.969(3)    | 138.00    |
| N10-H10 …N5                    | 0.8800     | 2.2400               | 2.927(3)    | 135.00    |
| C11-H11A ····N9 <sup>iii</sup> | 0.9800     | 2.6100               | 3.505(4)    | 153.00    |

Symmetry Code: i: 1-x,1-y,1-z, ii: 2-x,1/2+y,3/2-z

### Table S6 Selected bond lengths [Å] and angles [ ] for $4a{\cdot}2H_2O$

|       |          | 0         |          |  |
|-------|----------|-----------|----------|--|
| 01-N2 | 1.455(5) | N6 -C4    | 1.359(5) |  |
| 01-N3 | 1.367(5) | N8 -H8A_b | 0.97(5)  |  |
| O2-N2 | 1.212(6) | N8 -H8A   | 0.97(5)  |  |
| O3-N4 | 1.408(5) | N8 -H8D   | 0.96(5)  |  |
| O3-C4 | 1.348(5) | N8 -H8C_b | 0.97(5)  |  |
| O4-N7 | 1.249(4) | N8 -H8D_b | 0.96(6)  |  |

| O5-N7           | 1.248(5) | N8 -H8B_b     | 0.97(5)  |
|-----------------|----------|---------------|----------|
| O6-H6A          | 0.8500   | N8 -H8C       | 0.97(5)  |
| O6-H6B          | 0.8500   | N8 -H8B       | 0.97(5)  |
| O6-H6'B         | 0.8500   | N9 -H9C       | 0.9000   |
| O6-H6'A         | 0.8500   | N9 -H9B       | 0.9000   |
| N1-N1_a         | 1.255(5) | N9 -H9A       | 0.9000   |
| N1-C2           | 1.407(6) | N9 -H9D       | 0.9000   |
| N2-C1           | 1.339(6) | C1 -C2        | 1.410(6) |
| N3-C2           | 1.311(5) | C1 -C3        | 1.454(6) |
| N4-C3           | 1.304(6) | N9'-H9'A      | 0.9000   |
| N5-C3           | 1.368(5) | N9'-H9'B      | 0.9000   |
| N5-C4           | 1.315(5) | N9'-H9'C      | 0.9000   |
| N6-N7           | 1.332(6) | N9'-H9'D      | 0.9000   |
| N2 -O1 -N3      | 108.1(3) | H8A -N8-H8D   | 110(5)   |
| N4 -O3 -C4      | 107.0(3) | H8A -N8-H8A_b | 81(4)    |
| H6A-O6 -H6B     | 110.00   | H8A -N8-H8B_b | 158(5)   |
| H6'A -O6'-H6'B  | 108.00   | H8A -N8-H8C_b | 49(5)    |
| N1_a -N1 -C2    | 111.7(3) | H8A -N8-H8D_b | 84(4)    |
| O1 -N2 -C1      | 107.1(4) | H8B -N8-H8C   | 109(5)   |
| O1 -N2 -O2      | 117.2(4) | H8B -N8-H8D   | 109(4)   |
| O2 -N2 -C1      | 135.7(4) | H8A_b-N8-H8B  | 158(5)   |
| O1 -N3 -C2      | 106.2(4) | H8B -N8-H8B_b | 68(4)    |
| O3 -N4 -C3      | 102.2(4) | H8B -N8-H8C_b | 92(5)    |
| C3 -N5 -C4      | 101.5(3) | H8B -N8-H8D_b | 55(4)    |
| N7 -N6 -C4      | 117.4(4) | H8C -N8-H8C_b | 155(5)   |
| O4 -N7 -N6      | 115.7(4) | H8A_b-N8-H8C  | 49(5)    |
| O5 -N7 -N6      | 123.5(3) | H8B_b-N8-H8C  | 92(5)    |
| O4 -N7 -O5      | 120.9(4) | H8C -N8-H8D_b | 74(5)    |
| H8B_b-N8 -H8D   | 55(4)    | H9A -N9-H9B   | 107.00   |
| H8A_b-N8 -H8D   | 84(4)    | H9B -N9-H9D   | 111.00   |
| H8A_b-N8 -H8B_b | 110(4)   | H9C -N9-H9D   | 109.00   |
| H8C_b-N8 -H8D   | 74(5)    | H9A -N9-H9C   | 110.00   |
| H8A_b-N8 -H8D_b | 110(5)   | H9A -N9-H9D   | 110.00   |
| H8B_b-N8 -H8C_b | 109(5)   | H9B -N9-H9C   | 111.00   |
| H8B_b-N8 -H8D_b | 109(4)   | C2 -C1-C3     | 133.3(4) |
| H8C_b-N8 -H8D_b | 110(5)   | N2 -C1-C3     | 121.3(4) |
| H8D -N8 -H8D_b  | 163(4)   | N2 -C1-C2     | 105.4(4) |
| H8C -N8 -H8D    | 110(5)   | N1 -C2-C1     | 125.2(3) |
| H8A_b-N8 -H8C_b | 109(5)   | N1 -C2-N3     | 121.5(4) |
| H8A -N8 -H8B    | 110(4)   | N3 -C2-C1     | 113.2(4) |
| H8A -N8 -H8C    | 109(5)   | N4 -C3-N5     | 116.6(4) |
| N4 -C3-C1       | 121.1(4) | H9'A-N9'-H9'C | 110.00   |
| N5 -C3-C1       | 122.3(4) | H9'A-N9'-H9'D | 110.00   |
| O3 -C4- N6      | 110.1(4) | H9'B-N9'-H9'C | 110.00   |

| N5 -C4- N6    | 137.1(4) | H9'B-N9'-H9'D | 110.00 |  |
|---------------|----------|---------------|--------|--|
| O3 -C4- N5    | 112.8(4) | H9'C-N9'-H9'D | 108.00 |  |
| H9'A-N9-'H9'B | 108.00   |               |        |  |

|                  | Table S7 Selec | ted torsion angles for [ ] 4a·2H <sub>2</sub> O |
|------------------|----------------|-------------------------------------------------|
| N2 -O1-N3 -C2    | -0.2(4)        | O1 -N2-C1 -C3 177.4(3)                          |
| N3 -O1-N2 -O2    | 179.7(3)       | O2 -N2-C1 -C3 -0.8(7)                           |
| N3 -O1-N2 -C1    | 1.1(4)         | O1 -N3-C2 -C1 -0.8(4)                           |
| N4 -O3-C4 -N6    | -179.1(3)      | O1 -N3-C2 -N1 -178.5(3)                         |
| C4 -O3-N4 -C3    | -0.4(4)        | O3 -N4-C3 -C1 -177.3(4)                         |
| N4 -O3-C4 -N5    | 0.6(5)         | O3 -N4-C3 -N5 0.1(5)                            |
| C2 -N1-N1_a-C2_a | -180.0(3)      | C4 -N5-C3 -C1 177.5(4)                          |
| N1_a-N1-C2 -N3   | -32.5(5)       | C3 -N5-C4 -O3 -0.5(4)                           |
| N1_a-N1-C2 -C1   | 150.1(4)       | C4 -N5-C3 -N4 0.2(5)                            |
| O2 -N2-C1 -C2    | -179.7(5)      | C3 -N5-C4 -N6 179.0(5)                          |
| O1 -N2-C1 -C2    | -1.5(4)        | C4 -N6-N7 -O4 -178.6(3)                         |
| C4 -N6-N7 -O5    | 0.4(5)         | C3-C1-C2-N1 0.4(7)                              |
| N7 -N6-C4 -O3    | 177.3(3)       | C3-C1-C2-N3 -177.2(4)                           |
| N7 -N6-C4 -N5    | -2.2(7)        | N2-C1-C3-N4 -0.6(6)                             |
| C2 -C1-C3 -N5    | 0.7(7)         | N2-C1-C3-N5 -177.8(4)                           |
| N2 -C1-C2 -N1    | 179.1(3)       | C2-C1-C3-N4 177.9(4)                            |
| N2 -C1-C2 -N3    | 1.5(5)         |                                                 |

| Table S8 Hydroge | n bonds for | [Å and ° | $4a \cdot 2H_2O$ |
|------------------|-------------|----------|------------------|
|------------------|-------------|----------|------------------|

|                  |                        | , U      |           |           |  |
|------------------|------------------------|----------|-----------|-----------|--|
| $D - H \cdots A$ | d(D-H)/ Å              | d(HA)∕ Å | d(DA)∕ Å  | <(DHA)/ ° |  |
| O6-H6BN6         | $0.8500^{i}$           | 2.0100   | 2.858(10) | 177.00    |  |
| N8-H8CN1         | 0.97(5) <sup>ii</sup>  | 2.55(5)  | 3.308(3)  | 135(4)    |  |
| N8-H8CN5         | 0.97(5) <sup>iii</sup> | 2.55(6)  | 3.247(4)  | 129(4)    |  |
|                  |                        |          |           |           |  |

Symmetry Code: i: x,-1+y,z ii : 1/2+x,-1/2+y,z, iii: 1/2+x,-3/2+y,z

3. <sup>1</sup>H NMR and <sup>13</sup>C NMR of compounds 2-4,3a-d and 4a-c



**Figure S2.** <sup>13</sup>C NMR spectra in DMSO- $d_6$  for compound **2.** 







**Figure S8.** <sup>1</sup>H NMR spectra in DMSO- $d_6$  for compound **3**c



Figure S10. <sup>1</sup>H NMR spectra in DMSO-*d*<sub>6</sub> for compound 3d



Figure S12. <sup>1</sup>H NMR spectra in DMSO-*d*<sub>6</sub> for compound 4



Figure S14. <sup>1</sup>H NMR spectra in DMSO-*d*<sub>6</sub> for compound 4a



Figure S16. <sup>1</sup>H NMR spectra in DMSO-*d*<sub>6</sub> for compound 4b







8 I ° I

# 4. The DSC plots of compounds 3, 4, 3a-d, 4a-c, RDX, HMX and CL-20.



Figure S20. The DSC plot of compound 3



Figure S21. The DSC plot of compound 3a



Figure S22. The DSC plot of compound 3b



Figure S23. The DSC plot of compound 3c



Figure S24. The DSC plot of compound 3d



Figure S25. The DSC plot of compound 4



Figure S26. The DSC plot of compound 4a



Figure S27. The DSC plot of compound 4b



Figure S28. The DSC plot of compound 4c



Figure S29. The DSC plot of compound RDX



Figure S30. The DSC plot of compound HMX



Figure S31. The DSC plot of compound CL-20

### 5. Reference

- [1] M. J. Frisch, et al. Gaussian 09, Revision D. 01 (Gaussian Inc., 2009).
- [2] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652
- [3] P. J. Stephens; F. J. Devlin; C. F. Chabalowski; M. J. Frisch. J. Phys. Chem. 1994, 98, 11623-11627.
- [4] P. C. Hariharan; J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222.