Electronic Supplementary Material

Efficient optical limiting of polypyrrole ternary nanohybrids co-functionalized with peripherally substituted porphyrins and axially-coordinated metal-porphyrins

Aijian Wang*, Laixiang Cheng, Xiaodong Chen, Cheng Li, Jing Zhang, Weihua Zhu*

School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China

Corresponding Author. E-mail: wajujs@ujs.edu.cn, sayman@ujs.edu.cn

Table S1. Surface element compositions (atomic percentage) of PPy, TPP-PPy, SnTPP-PPy and TPP-PPy-SnTPP derived from the XPS results.

Elements	PPy	TPP-PPy	SnTPP-PPy	TPP-PPy-SnTPP
С	69.16%	72.19%	73.36%	74.94%
N	14.64%	12.25%	10.63%	9.95%
O	16.20%	15.56%	14.70%	14.15%
Sn	0	0	1.31%	0.96%

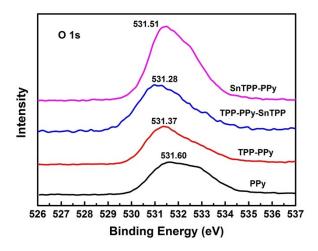


Figure S1. XPS spectra of PPy, SnTPP-PPy, TPP-PPy and TPP-PPy-SnTPP in the region of O 1s.

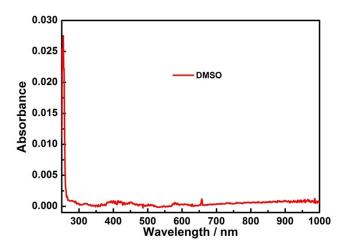


Figure S2. UV-visible absorption spectrum of DMSO used for the Z-scan measurements.

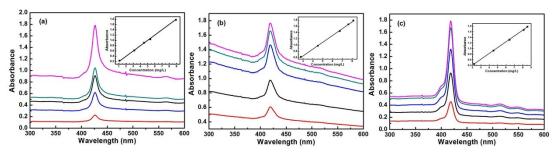


Figure S3. Concentration dependence of the UV-vis absorption spectra of (a) TPP-PPy, (b) SnTPP-PPy and (c) TPP-PPy-SnTPP in DMSO.