Electronic Supplementary Information

for

Fundamental electron-transfer and proton-coupled electron-transfer properties of Ru(IV)-oxo complexes

Hiroaki Kotani,^a Hinatsu Shimomura,^a Momoka Horimoto,^a Tomoya Ishizuka,^a Yoshihito Shiota,^b Kazunari Yoshizawa,^b Sachiko Yanagisawa,^c Yuka Kawahara-Nakagawa,^c Minoru Kubo^c and Takahiko Kojima^{*a}

^a Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-

1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan

^b Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan

^c Graduate School of Life Science, University of Hyogo 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan

Figure S1 (An ORTEP drawing of [Ru ^{ll} (Mebpa)(bpy)(OH ₂)] ²⁺)	S2
Figure S2 (Resonance Raman spectroscopy of 1)	S3
Figure S3 (CV and SWV traces for 1 and 2)	S4
Figure S4 (Spectral redox titration of 1 with $Me_{10}Fc$)	S5
Figure S5 (ESR spectrum of Ru(III)-O species)	S6
Figure S6 (UV-vis spectral changes of 1)	S7
Figure S7 (Reversible UV-vis spectral changes of ${f 1}$ and ${Ru}^{III}(O)$)	S8
Figure S8 (UV-vis spectral changes of 1 in ET reactions)	S9
Figure S9 (UV-vis spectral changes of 2 in ET reactions)	S10
Figure S10 (UV-vis spectral changes of 1 and Fc with TFA)	S11
Figure S11 (Titration with Me ₁₀ Fc)	S12
Figure S12 (CV and SWV traces for 1 and 2 with TFA)	S13
Figure S13 (UV-vis spectral changes of 1 in PCET reactions)	S14
Figure S14 (UV-vis spectral changes of 2 in PCET reactions)	S15
Figure S15 (DFT calculations of 1 in ET reactions)	S16
Figure S16 (DFT calculations of 1 with TFA in PCET reactions)	S17
Table S1-S5 (Cartesian coordinates obtained by DFT calculations)	S18-29

Fig. S1 An ORTEP drawing of $[Ru^{II}(Mebpa)(DH_2)]^{2+}$ (3) with 50% probability thermal ellipsoids. Hydrogen atoms and PF_6^- ions were omitted for clarity except for protons of the H₂O ligand.

Fig. S2 Resonance Raman spectra of (a) 1^{-16} O, (b) 1^{-18} O, and (c) the differential spectrum, measured at 243 K in CD₃CN with 441.6 nm excitation.

Fig. S3 CV and SWV traces for (a) $\mathbf{1}$ (1.0 mM) and (b) $\mathbf{2}$ (1.0 mM) in CH₃CN containing 0.1 M TBAPF₆ as an electrolyte at 298 K.

Fig. S4 (a) UV-vis spectral changes in an ET reaction from $Me_{10}Fc$ (0 to 0.05 mM) to 1 (0.05 mM) in CH₃CN at 298 K. (b) A plot of concentration of the formed Ru^{III}(O) complex ([Ru^{III}(O)]) relative to [Me₁₀Fc].

Fig. S5 An ESR spectrum of the Ru^{III} species formed by the reaction of 1 (1.0 mM) with Me₈Fc (1.0 mM) in CH₃CN. The spectrum was measured at 20 K. The peak marked with an asterisk is ascribed to the impurity in the ESR cavity.

Fig. S6 Plots of $[Ru^{III}(O)]$ produced in an ET reaction from Me₈Fc to (a) **1** (0.05 mM) and (b) **2** (0.25 mM) with Me₅Fc in CH₃CN at 243 K.

Fig. S7 UV-vis spectral change observed in redox reactions by addition of 1 equivalent of Me_8Fc (blue trace) and 1 equivalent of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Aminyl) as a 1e⁻-oxidant (green trace) and Me_8Fc again (light blue trace) alternately to a CH₃CN solution of **1** (0.10 mM) at 298 K. The dotted line denotes UV-vis spectrum of authentic tris(4-bromophenyl)amine ((BrPh)₃N) (0.1 mM), which is the product of 1e-reduction of Aminyl, in CH₃CN.

Fig. S8 (a) UV-vis spectral changes (interval: 0.5 s) in the course of an ET reaction from $Me_{10}Fc$ (0.25 mM) to **1** (0.025 mM) at 243 K. (b) UV-vis spectral changes (interval: 500 s) in the course of an ET reaction from Me₅Fc (1.00 mM) to **1** (0.05 mM). Inset: The time profile of the absorbance at $\lambda = 490$ nm. Plots of k_{obs} vs. (c) [Me₁₀Fc] and (d) [Me₅Fc].

Fig. S9 (a) UV-vis spectral changes (interval: 50 ms) in the course of an ET reaction from Me₈Fc (2.5 mM) to **2** (0.10 mM) at 243 K. (b) UV-vis spectral changes (interval: 10 s) in the course of an ET reaction from Me₅Fc (1.0 mM) to **2** (0.10 mM). Inset: The time profile of the absorbance at $\lambda = 530$ nm. Plots of k_{obs} vs. (c) [Me₈Fc] and (d) [Me₅Fc]. The spectra shown in (a) and (b) are differential spectra obtained by subtracting the absorption spectra of excess amounts of ferrocene derivatives from the observed spectra on the basis of the fact that the absorption changes of the ferrocene derivatives are negligible under the pseudo-first-order reaction conditions.

Fig. S10 UV-vis spectral changes in the course of an ET reaction from Fc (0.10 mM) to 1 (0.05 mM) before (black line) and after (orange line) addition of TFA (2.5 mM) at 298 K. The grey dotted line denotes the UV-vis spectrum of $[Ru^{II}(Mebpa)(bpy)(OH_2)]^{2+}$ (3) (0.05 mM).

Fig. S11 (a) UV-vis spectral changes in the course of a PCET reaction from $Me_{10}Fc$ (0 to 0.09 mM) to 1 (0.05 mM) in the presence of TFA (2.5 mM) in CH₃CN at 298 K. (b) A plot of $[Ru^{II}(OH_2)] vs. [Me_{10}Fc].$

Fig. S12 CV and SWV traces for (a) **1** (1.0 mM) and (b) **2** (1.0 mM) in the presence of TFA (2.5 mM) in CH₃CN containing 0.1 M TBAPF₆ as an electrolyte at 298 K.

Fig. S13 UV-vis spectral changes (interval: (a), (b) 5 ms and (c) 10 s) in the presence of TFA (2.5 mM) at 243 K in CH₃CN in the course of PCET reactions (a) from BrFc (0.50 mM) to 1 (0.025 mM), (b) from Br₂Fc (0.75 mM) to 1 (0.025 mM), and (c) from (MeO)₃Ph (1.75 mM) to 1 (0.05 mM). Inset: The time profile of the absorbance at λ = 464 nm. Plots of k_{obs} vs. (d) [BrFc], (e) [Br₂Fc], and (f) [(MeO)₃Ph].

Fig. S14 UV-vis spectral changes (interval: (a), (b) 2 ms and (c) 10 ms) in the presence of TFA (2.5 mM) at 243 K in CH₃CN in the course of PCET reactios (a) from BrFc (0.30 mM) to **2** (0.01 mM), (b) from Br₂Fc (0.50 mM) to **2** (0.025 mM), and (c) from Ph₃N (3.75mM) to **2** (0.01 mM). Inset: The time profile of the absorbance at $\lambda = 450$ nm. Plots of k_{obs} vs. (d) [BrFc], (e) [Br₂Fc], and (f) [Ph₃N].

Ru^{IV}(O)

Ru^{III}(O)

selected bonds	bond lengths of Ru ^{IV} (Å)	bond lengths of Ru ^{III} (Å)
Ru-O (Oxo)	1.77	1.86
Ru-N1	2.29	2.15
Ru-N2	2.12	2.12
Ru-N3	2.12	2.12
Ru-N4	2.11	2.05
Ru-N5	2.11	2.05
average of	0.0	058
$\Delta Ru^{\rm III} - Ru^{\rm IV} $		

Fig. S15 DFT optimized structures of 1 and $Ru^{III}(O)$ and the difference of representative coordination bond lengths between complex 1 and $Ru^{III}(O)$.

selected bonds	bond lengths of Ru ^{IV} (Å)	bond lengths of Ru ^{III} (Å)
Ru-O (Oxo)	1.78	1.93
Ru-N1	2.28	2.23
Ru-N2	2.11	2.12
Ru-N3	2.12	2.12
Ru-N4	2.10	2.08
Ru-N5	2.11	2.08
average of	0.0)43
$\Delta Ru^{III} - Ru^{IV} $		

Fig. S16 DFT optimized structures of **1** and the one-electron-reduced species in the presence of two TFA molecules and the difference of representative coordination bond lengths between complex **1** and the one-electron-reduced species.

Table S1. Cartesian coordinates of 1 at the B3LYP level.Units are in angstrom.

Atom	Х	Y	Z
Ru	-0.064786	-0.000000	-0.370679
0	-0.159444	0.000009	-2.138547
Ν	0.509726	-0.000025	1.848336
С	1.323176	1.240598	2.064881
Н	2.016956	1.109064	2.904622
Н	0.625748	2.034883	2.356777
Ν	1.506702	1.419215	-0.365736
Ν	1.506698	-1.419227	-0.365752
Ν	-1.685675	1.333218	-0.196272
Ν	-1.685691	-1.333207	-0.196311
С	2.062081	1.717316	0.833712
С	3.200812	2.521852	0.929092
Н	3.628542	2.741580	1.904023
С	3.769817	3.044288	-0.238971
Н	4.653988	3.675062	-0.186094
С	3.181414	2.738843	-1.473601
Н	3.585602	3.120550	-2.406811
С	2.057667	1.913721	-1.498130
Н	1.572370	1.627567	-2.427073
С	1.322876	-1.240851	2.064830
Н	0.625205	-2.035052	2.356379
Н	2.016476	-1.109636	2.904770
С	2.061965	-1.717436	0.833727
С	3.200707	-2.521946	0.929142
Н	3.628345	-2.741760	1.904094
С	3.769841	-3.044253	-0.238919
Н	4.654024	-3.675008	-0.186017
С	3.181552	-2.738706	-1.473575

Η	3.585839	-3.120316	-2.406782
С	2.057784	-1.913607	-1.498137
Н	1.572569	-1.627382	-2.427100
С	-0.617540	0.000082	2.829786
Н	-0.243043	0.000030	3.861927
Н	-1.234895	-0.888449	2.679791
Н	-1.234709	0.888744	2.679808
С	-1.598767	2.676990	-0.244281
Н	-0.601568	3.094407	-0.340295
С	-2.721605	3.503668	-0.192756
Н	-2.600562	4.581988	-0.239714
С	-3.985286	2.909359	-0.091719
Н	-4.884696	3.518985	-0.052335
С	-4.077987	1.514275	-0.052178
Η	-5.052017	1.041963	0.013219
С	-2.911644	0.740794	-0.111182
С	-2.911653	-0.740773	-0.111210
С	-4.078006	-1.514242	-0.052248
Н	-5.052031	-1.041922	0.013156
С	-3.985320	-2.909326	-0.091846
Н	-4.884737	-3.518943	-0.052494
С	-2.721646	-3.503645	-0.192898
Η	-2.600615	-4.581965	-0.239902
С	-1.598798	-2.676978	-0.244379
Н	-0.601603	-3.094403	-0.340412

Table S2. Cartesian coordinates of one-electron reduced 1 at the B3LYP level.Units are in angstrom.

Atom	Х	Y	Z
Ru	-0.106095	-0.000136	-0.283736
0	-0.250212	-0.000010	-2.133958
Ν	0.619505	-0.000332	1.912971
С	1.438941	1.236980	2.066434
Н	2.181778	1.124657	2.869066
Н	0.753307	2.033375	2.380677
Ν	1.475248	1.404347	-0.367338
Ν	1.475216	-1.404715	-0.367537
Ν	-1.683503	1.305453	-0.130697
Ν	-1.683724	-1.305412	-0.130934
С	2.109189	1.702586	0.789917
С	3.265362	2.488846	0.811202
Н	3.756477	2.705240	1.756668
С	3.768207	2.994582	-0.393935
Н	4.663199	3.612143	-0.401283
С	3.100716	2.685248	-1.586570
Н	3.454564	3.050681	-2.546424
С	1.964831	1.875920	-1.533986
Н	1.411081	1.560138	-2.416254
С	1.437790	-1.238432	2.066130
Н	0.751078	-2.034569	2.378679
Н	2.179794	-1.127569	2.869731
С	2.108977	-1.703156	0.789813
С	3.265582	-2.488720	0.811079
Н	3.756577	-2.705233	1.756578
С	3.769041	-2.993673	-0.394162
Н	4.664409	-3.610690	-0.401516
С	3.101685	-2.684265	-1.586828
Н	3.455958	-3.049152	-2.546731
С	1.965337	-1.875534	-1.534219
Н	1.411717	-1.559684	-2.416535
С	-0.451501	-0.000015	2.943741
Н	-0.037668	-0.000291	3.963865

Η	-1.078750	-0.885048	2.813460
Н	-1.078062	0.885530	2.813651
С	-1.596976	2.656887	-0.117453
Н	-0.593323	3.069985	-0.131035
С	-2.709563	3.489062	-0.109972
Н	-2.574035	4.566708	-0.104904
С	-3.991157	2.908129	-0.129461
Н	-4.884349	3.527224	-0.131636
С	-4.092034	1.520249	-0.156239
Н	-5.068426	1.047944	-0.181055
С	-2.927471	0.731587	-0.163322
С	-2.927600	-0.731345	-0.163422
С	-4.092288	-1.519821	-0.156334
Н	-5.068613	-1.047373	-0.181064
С	-3.991626	-2.907720	-0.129703
Н	-4.884919	-3.526670	-0.131813
С	-2.710125	-3.488865	-0.110438
Н	-2.574788	-4.566536	-0.105537
С	-1.597406	-2.656874	-0.117937
Н	-0.593808	-3.070100	-0.131794

Table S3	. Cartesian coordinates	of one-electron reduced	l 1 with two	H ₂ O molecules a	at the B3LYP
level. Un	its are in angstrom.				

Atom	Х	Y	Z
С	1.482341	-2.677580	-0.059541
Ν	1.596808	-1.332505	-0.088499
С	2.835421	-0.778959	-0.242373
С	3.974948	-1.581104	-0.400854
С	3.847968	-2.970687	-0.384074
С	2.574548	-3.530274	-0.203977
Ru	0.029686	0.009583	0.109058
Ν	1.648371	1.290801	-0.063735
С	1.587767	2.638457	-0.005490
С	2.713789	3.449612	-0.127547
С	3.964908	2.843897	-0.314846
С	4.036427	1.451130	-0.362088
С	2.864605	0.692282	-0.226415
0	0.188714	0.009820	1.996596
Ν	-0.524761	0.038953	-2.087862
С	0.598070	0.068710	-3.067570
Ν	-1.521002	1.443869	0.132343
С	-2.087463	1.739074	-1.060814
С	-3.225472	2.547407	-1.151520
С	-3.779377	3.081389	0.016551
С	-3.175666	2.785050	1.246491
С	-2.055506	1.955276	1.261428
С	-1.366124	1.258934	-2.299209
Ν	-1.583015	-1.373296	0.098982
С	-2.104394	-1.663161	-1.117583
С	-3.262335	-2.433503	-1.259171
С	-3.891379	-2.937017	-0.115492
С	-3.339706	-2.643972	1.138245
С	-2.192833	-1.851650	1.204807

С	-1.309730	-1.212251	-2.319299
Н	-2.075082	1.105060	-3.121399
Η	-0.693405	2.066398	-2.609511
Η	-3.659782	2.756333	-2.125168
Н	-4.662037	3.713923	-0.031792
Η	-3.565716	3.176751	2.181192
Η	-1.549912	1.673836	2.179365
Η	-0.589019	-2.005708	-2.548600
Η	-1.960174	-1.109823	-3.196273
Η	-3.654336	-2.636345	-2.251809
Η	-4.791154	-3.540850	-0.201432
Η	-3.789448	-3.009274	2.056807
Η	-1.742509	-1.580628	2.154432
Η	0.220908	0.074075	-4.099364
Η	1.227819	-0.811773	-2.925051
Η	1.200679	0.964218	-2.904421
Η	0.603743	3.069469	0.144526
Η	2.604886	4.528453	-0.072792
Η	4.865341	3.443648	-0.415488
Η	4.995210	0.962672	-0.495069
Η	4.951265	-1.128176	-0.530538
Η	4.723419	-3.603188	-0.502953
Η	2.422872	-4.604841	-0.172026
Η	0.483032	-3.072522	0.088823
Η	1.671005	0.071852	2.617975
0	2.591701	0.114223	3.033420
Η	2.440143	0.024078	3.984219
Н	-0.741672	-0.226261	3.339694
0	-1.236143	-0.454165	4.179257
Н	-2.056099	0.056861	4.147349

Table S4. Cartesian coordinates of 1 with TFA at the B3LYP level.Units are in angstrom.

Atom	Х	Y	Z
С	-2.521575	-0.033939	2.668588
Ν	-2.301759	-0.478456	1.415135
С	-2.791412	-1.693234	1.034540
С	-3.536210	-2.475113	1.925478
С	-3.771587	-2.009123	3.222579
С	-3.253257	-0.765176	3.603931
Ru	-1.111866	0.489888	-0.028675
Ν	-1.699239	-1.242866	-1.066727
С	-1.320681	-1.565756	-2.319508
С	-1.688899	-2.766896	-2.925659
С	-2.471481	-3.671114	-2.197842
С	-2.857657	-3.340869	-0.894613
С	-2.458995	-2.117372	-0.344402
0	0.375177	-0.258417	0.588517
Ν	-2.786247	1.800172	-0.853914
С	-4.132502	1.162887	-0.987725
Ν	-0.100630	1.462289	-1.609721
С	-0.834605	2.302548	-2.380146
С	-0.236018	3.104599	-3.353775
С	1.149987	3.026789	-3.547459
С	1.897248	2.151024	-2.750629
С	1.239032	1.393080	-1.782348
С	-2.337049	2.238533	-2.217559
Ν	-0.749257	2.295122	1.017363
С	-1.623794	3.308512	0.806457
С	-1.393961	4.586769	1.320817
С	-0.241913	4.820689	2.082399
С	0.652449	3.764374	2.298917
С	0.371883	2.517847	1.740204

С	-2.909528	2.958742	0.091383
Н	-2.797198	3.197360	-2.486361
Н	-2.715888	1.497844	-2.931744
Н	-0.847148	3.772277	-3.955829
Н	1.633384	3.640999	-4.303520
Н	2.973263	2.048136	-2.848612
Η	1.786517	0.724160	-1.127039
Η	-3.643683	2.672879	0.854106
Η	-3.317363	3.837132	-0.423820
Η	-2.110189	5.382793	1.133696
Η	-0.046032	5.807760	2.494426
Η	1.561323	3.896711	2.878727
Η	1.043072	1.672423	1.854343
Н	-4.864618	1.874230	-1.391573
Н	-4.476374	0.821197	-0.009123
Н	-4.067685	0.304825	-1.660028
Η	-0.692031	-0.847908	-2.836127
Η	-1.352710	-2.986761	-3.934643
Η	-2.766389	-4.624333	-2.629515
Η	-3.445796	-4.042858	-0.314483
Н	-3.915789	-3.445247	1.624823
Н	-4.341201	-2.612352	3.925271
Н	-3.399804	-0.368569	4.604334
Н	-2.085331	0.926026	2.925768
Н	6.492457	-0.335301	-1.189219
Н	0.628617	-2.023487	1.150584
0	6.244182	-0.148518	-0.264038
С	5.022712	0.366340	-0.224053
0	4.288409	0.593578	-1.161581
С	4.609285	0.647829	1.250157
F	5.534760	1.360689	1.894150
F	3.449955	1.346457	1.263927
F	4.404567	-0.505786	1.903861

0	0.166219	-2.881827	1.276360
С	0.682860	-3.880675	0.543491
0	0.178402	-4.968454	0.454400
С	1.973411	-3.507223	-0.250383
F	2.750379	-2.651238	0.450885
F	2.679759	-4.577130	-0.571135
F	1.605365	-2.865675	-1.395467

Table S5. Cartesian coordinates of one-electron reduced 1 with TFA at the B3LYP level.Units are in angstrom.

Atom	Х	Y	Z
С	-1.669557	0.787061	2.886934
Ν	-1.884417	0.486465	1.589830
С	-2.954650	-0.286951	1.254691
С	-3.855613	-0.736261	2.229227
С	-3.640007	-0.407129	3.566378
С	-2.521014	0.367275	3.905337
Ru	-0.608542	0.966218	0.013997
Ν	-2.087723	-0.108681	-0.974527
С	-2.092922	-0.393641	-2.291656
С	-3.086888	-1.169290	-2.886120
С	-4.107139	-1.685232	-2.078899
С	-4.095235	-1.408112	-0.710320
С	-3.073971	-0.612687	-0.177438
0	0.422222	-0.634548	0.320879
Ν	-1.510115	2.969305	-0.392467
С	-2.995943	3.070131	-0.299788
Ν	0.535199	1.533428	-1.672720
С	0.212602	2.726888	-2.227419
С	0.985176	3.297940	-3.240077
С	2.111540	2.607332	-3.709208
С	2.423885	1.365365	-3.145764
С	1.615875	0.862046	-2.123338
С	-1.099860	3.336473	-1.788257
Ν	0.769912	2.196868	1.062809
С	0.480769	3.520508	1.062110
С	1.376171	4.470360	1.559036
С	2.597845	4.042046	2.093874
С	2.879973	2.671158	2.113127
С	1.945070	1.781262	1.580823

С	-0.913470	3.901225	0.618255
Н	-1.086430	4.427023	-1.912183
Н	-1.878711	2.950384	-2.456466
Н	0.703338	4.259976	-3.660559
Н	2.727540	3.032026	-4.498275
Н	3.282244	0.783687	-3.468740
Н	1.840327	-0.089428	-1.652144
Н	-1.558942	3.860987	1.503878
Н	-0.937978	4.935902	0.252547
Н	1.115249	5.525328	1.535706
Н	3.310120	4.762771	2.488123
Н	3.809091	2.284499	2.521753
Н	2.126261	0.712319	1.567272
Н	-3.335919	4.092632	-0.514693
Н	-3.317441	2.790323	0.705312
Н	-3.452118	2.384180	-1.016069
Н	-1.262134	-0.007935	-2.873074
Н	-3.037165	-1.383032	-3.949546
Н	-4.883258	-2.318960	-2.499634
Н	-4.849818	-1.837786	-0.063848
Н	-4.688257	-1.371485	1.951741
Н	-4.319724	-0.766089	4.334990
Н	-2.298785	0.628865	4.935577
Н	-0.778687	1.367157	3.106120
Н	1.883716	-1.217732	0.620962
Н	-0.187860	-1.440002	0.561550
0	2.776183	-1.528936	0.991056
С	3.687792	-1.628220	0.040290
0	3.558846	-1.356484	-1.137692
С	5.045654	-2.104957	0.630443
F	4.905224	-3.241410	1.326742
F	5.942907	-2.297790	-0.338739
F	5.522507	-1.150685	1.467087

0	-1.224470	-2.389902	1.009840
С	-1.729649	-3.423669	0.450356
0	-2.877016	-3.864349	0.551821
С	-0.758326	-4.138251	-0.548189
F	0.509065	-4.197633	-0.083355
F	-1.140924	-5.378198	-0.868550
F	-0.712510	-3.412412	-1.714332