Supporting Information for

Enhanced photocatalytic activity of $g-C_3N_4/MnO$ composites for hydrogen evolution under visible light

Na Mao^{*a,b*}, Xiaomin Gao^{*a*}, Chong Zhang^{*a*}, Chang Shu^{*a*}, Wenyan Ma^{*a*}, Feng Wang^{*c,d*},

and Jia-Xing Jiang^{a,*}

^a Shaanxi Key Laboratory for Advanced Energy Devices, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China. E-mail: <u>jiaxing@snnu.edu.cn</u>.

^b College of Chemistry and Materials, Weinan Normal University, Weinan 714099, P. R. China

^c Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical

Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P. R. China

^d School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Fig. S1. Thermogravimetric analysis curves of $g-C_3N_4$ and the $g-C_3N_4/MnO$ composites under N_2 atmosphere.

Fig. S2. (a) and (b) Scanning electron microscopy images of pure $g-C_3N_4$ from melamine, (c) Transmission electron microscopy images of $g-C_3N_4$ and (d) the $g-C_3N_4/MnO-5$ composite.

Fig. S3. Scanning electron microscopy images of (a) pure $g-C_3N_4$; (b) $g-C_3N_4/MnO-1$ composite; (c) $g-C_3N_4/MnO-3$ composite; (d) $g-C_3N_4/MnO-5$ composite; (e) $g-C_3N_4/MnO-7$ composite; (f) $g-C_3N_4/MnO-11$ composite;

Fig. S4. XPS spectra of the bare $g-C_3N_4$ and the $g-C_3N_4/MnO-5$ composite for O 1s.

Fig. S5. Nitrogen adsorption (filled symbols) / desorption (empty symbols) isotherms for the bare $g-C_3N_4$ and the $g-C_3N_4/MnO$ composites collected at 77.3 K.

Fig. S6. (a) The UV-Vis reflection spectrum of MnO; (b) Band-gap plot for MnO.

Fig. S7. Band-gap plots of all of the samples.

Fig. S8. EIS plots of the bare $g-C_3N_4$ and the $g-C_3N_4/MnO-5$ composite.

Fig. S9. (a) FT-IR spectra, and (b) Powder XRD patterns of the g-C₃N₄/MnO-5 composite before and after irradiation under visible light ($\lambda >$ 400 nm) for 15 h in a triethanolamine/water mixture.

Fig. S10. (a) UV-Vis spectra of the g-C₃N₄/MnO-5 composite, and (b) Photoluminescence spectra ($\lambda_{\text{excitation}} = 365 \text{ nm}$) of the g-C₃N₄/MnO-5 composite before and after irradiation under visible light ($\lambda > 400 \text{ nm}$) for 15 h in a triethanolamine/water mixture.

Fig. S11. Cyclic voltammetry measurement for (a) g- C_3N_4 and (b) MnO.

samples		Weight (%)			Atomic Ratios	
	C ^(a)	N ^(a)	Mn ^(b)	N/C	C/Mn	
g-C ₃ N ₄	34.66	59.25		1.54	-	
g-C ₃ N ₄ /MnO-5	32.51	57.64	2.89	1.56	54	

Table S1. Weight percentage of C, N, O, Mn in the g-C₃N₄/MnO-5 composite and g-C₃N₄

(a) Data obtained by EA, (b) Data obtained by ICP-MS

Table S2. The BET surface area, pore volume and pore size of g-C₃N₄, g-C₃N₄/MnO-5 composite

Photocatalyst	$^aS_{BET}/m^2\!\cdot\!g^{-1}$	^b Pore volume/cm ³ ·g ⁻¹	Pore size/nm
g-C ₃ N ₄	12	0.06	20.8
g-C ₃ N ₄ /MnO-1	13	0.10	29.4
g-C ₃ N ₄ /MnO-3	14	0.01	33.3
g-C ₃ N ₄ /MnO-5	48	0.25	18.8
g-C ₃ N ₄ /MnO-7	18	0.13	28.8
g-C ₃ N ₄ /MnO-11	6	0.03	23.5
MnO	9	0.05	0

a. BET Surface Area; b. *t-plot* micropore volume.

Table S3. Radiative fluorescence lifetimes and their relative percentages of photoexcited charge carriers in the $g-C_3N_4$ and $g-C_3N_4$ /MnO-5 composite.

Sample	$\tau_1(ns)(Rel \%)$	$\tau_2(ns)(Rel \%)$	τ ₃ (ns)(Rel %)	t _{av} (ns) ^a
g-C ₃ N ₄	1.13-38.00	4.41-47.55	26.62-14.45	17.62
g-C ₃ N ₄ /MnO-5	0.90-37.56	3.49-52.91	19.73-9.53	10.79