Supporting Information

Enhancing single-molecule magnet behaviour through decorating terminal ligands in Dy₂ compounds

Xiufang Ma,^{a#} Bingbing Chen,^{a#} Yi-Quan Zhang,^{*b} Jinhui Yang,^a Quan Shi,^{*c} Yulong Ma,^a and

Xiangyu Liu*a

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

^b Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China

^c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China # These authors contributed equally to this work.

*Corresponding author

Dr. Xiangyu Liu

E-mail: xiangyuliu432@126.com

Dr. Yi-Quan Zhang

E-mail: zhangyiquan@njnu.edu.cn

Prof. Quan Shi

E-mail: shiquan@dicp.ac.cn

Contents

Scheme S1. Synthesis of the ligands H₂bfbpen and H₂bcbpen.

Figure S1. The ${}^{1}H$ NMR (a) and ${}^{13}C$ NMR (b) spectra of H₂bfbpen.

Figure S2. The ¹H NMR (a) and ¹³C NMR (b) spectra of H_2 bcbpen.

Figure S3. Molecular stacking charts of compounds 1 (a) and 2 (b). All hydrogen atoms and free iodide ions/ H_2O are omitted for clarity.

Figure S4. PXRD curves of 1 (a) and 2 (b).

Figure S5. *M* vs *H* curves for 1 (a) and 2 (b) at different temperatures.

Figure S6. Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Figure S7. Temperature dependence of χ' and χ'' susceptibilities for 2 without static field.

Figure S8. Temperature dependence of χ' and χ'' susceptibilities for 1 at applied DC fields of 1200 Oe.

Figure S9. Cole-Cole plots for 1 at applied DC fields of 1200 Oe. The solid lines represent the best fit to the measured results.

Figure S10. Hysteresis loops for 1 (a) and 2 (b) at 1.8 K.

Figure S11. C_p vs T plot for 1 (a) and 2 (b) at several magnetic fields.

Figure S12. Calculated model structures of individual Dy^{III} fragments of **1** and **2**. All hydrogen atoms and free iodide ions/H₂O are omitted for clarity.

 Table S1. Crystal Data and Structure Refinement Details for 1 and 2.

Table S2. Selected bond lengths (Å) and bond angles (°) for 1 and 2.

Table S3. The calculated results for Dy^{III} ions configuration of 1 and 2 by SHAPE 2.1 software.

Table S4. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 1

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 2

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 1.

Table S7. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest eight Kramers doublets (KDs) of individual Dy^{III} fragments of **1** and **2** using CASSCF/RASSI with MOLCAS 8.2.

Table S8. Wave functions with definite projection of the total moment $|m_J\rangle$ for the lowest two KDs of individual Dy^{III} fragments of **1** and **2** using CASSCF/RASSI with MOLCAS 8.2.

Table S9. Exchange energies (cm⁻¹), the corresponding tunneling gaps (Δ_{tun}) and the main values of the g_z for the lowest two exchange doublets of 1 and 2.

Scheme S1. Synthesis of the ligands H₂bfbpen and H₂bcbpen.

Figure S1. The ${}^{1}H$ NMR (a) and ${}^{13}C$ NMR (b) spectra of H₂bfbpen.

Figure S2. The $^1\mathrm{H}$ NMR (a) and $^{13}\mathrm{C}$ NMR (b) spectra of H_2bcbpen.

Figure S3. Molecular stacking charts of compounds 1 (a) and 2 (b). All hydrogen atoms and free iodide ions/ H_2O are omitted for clarity.

Figure S4. PXRD curves of 1 (a) and 2 (b).

Figure S5. *M* vs *H* curves for 1 (a) and 2 (b) at different temperatures.

Figure S6. Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Figure S7. Temperature dependence of χ' and χ'' susceptibilities for 2 without static field.

Figure S8. Temperature dependence of χ' and χ'' susceptibilities for 1 at applied dc fields of 1200 Oe.

Figure S9. Cole-Cole plots for 1 at applied dc fields of 1200 Oe. The solid lines represent the best fit to the measured results.

Figure S11. $C_p vs T$ plot for 1 (a) and 2 (b) at several magnetic fields.

Figure S12. Calculated model structures of individual Dy^{III} fragments of **1** and **2**. All hydrogen atoms and free iodide ions/H₂O are omitted for clarity.

	1	2
Empirical formula	$C_{56}H_{56}Dy_2F_4N_8O_6I_2$	$C_{56}H_{57}Dy_2Cl_4N_8O_{6.5}I_2$
Formula weight	1591.88	1666.42
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	11.6015(5)	11.8909(8)
<i>b</i> (Å)	16.2765(8)	17.0320(9)
<i>c</i> (Å)	15.7772(8)	15.4647(10)
α (°)	90	90
β (°)	108.453(2)	107.506(2)
γ (°)	90	90
$V(Å^3)$	2826.1(2)	2986.9(3)
Ζ	2	2
μ (mm ⁻¹)	3.786	3.751
Unique reflections	5161	5483
Observed reflections	3934	3679
R _{int}	0.050	0.079
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0334, wR_2 = 0.0640$	$R_1 = 0.0495, wR_2 = 0.0846$
R indices (all data)	$R_1 = 0.0583, wR_2 = 0.0725$	$R_1 = 0.0968, wR_2 = 0.0998$

Table S1. Crystal Data and Structure Refinement Details for 1 and 2.

Table S2	. Selected bond	lengths (Å) and bond	l angles (°) for 1 and 2 .
----------	-----------------	------------	------------	-------------	-------------------------------

	1		2	
Dy(1)-O(1)	2.261(3)	Dy(1)-O(1)	2.248(5)	
Dy(1)-O(2)	2.305(3)	Dy(1)-O(2)	2.311(5)	
Dy(1)-O(3)	2.399(4)	Dy(1)-O(3)	2.382(7)	
Dy(1)-N(1)	2.598(5)	Dy(1)-N(1)	2.614(7)	

Dy(1)-N(2)	2.567(5)	Dy(1)-N(2)	2.547(7)
Dy(1)-N(3)	2.511(5)	Dy(1)-N(3)	2.522(7)
Dy(1)-N(4)	2.593(5)	Dy(1)-N(4)	2.601(6)
Dy(1)-O(2a)	2.405(3)	Dy(1)-O(2a)	2.402(5)
F(1)-C(10)	1.372(7)	Cl(1)-C(10)	1.752(9)
F(2)-C(23)	1.358(8)	Cl(2)-C(23)	1.722(11)
O(1)-Dy(1)-O(2)	84.42(12)	O(1)-Dy(1)-O(2)	83.75(18)
O(1)-Dy(1)-O(3)	149.44(13)	O(1)-Dy(1)-O(3)	149.75(19)
O(1)-Dy(1)-N(1)	74.10(13)	O(1)-Dy(1)-N(1)	73.39(19)
O(1)-Dy(1)-N(2)	81.09(14)	O(1)-Dy(1)-N(2)	80.29(19)
O(1)-Dy(1)-N(3)	110.03(14)	O(1)-Dy(1)-N(3)	110.7(2)
O(1)-Dy(1)-N(4)	139.76(14)	O(1)-Dy(1)-N(4)	139.1(2)
O(2)-Dy(1)-O(2a)	75.83(12)	O(2)-Dy(1)-O(2a)	76.90(17)
O(2)-Dy(1)-O(3)	73.83(13)	O(2)-Dy(1)-O(3)	74.1(2)
O(2)-Dy(1)-N(1)	146.67(14)	O(2)-Dy(1)-N(1)	146.2(2)
O(2)-Dy(1)-N(2)	80.16(14)	O(2)-Dy(1)-N(2)	80.04(19)
O(2)-Dy(1)-N(3)	146.67(14)	O(2)-Dy(1)-N(3)	147.3(2)
O(2)-Dy(1)-N(4)	109.65(13)	O(2)-Dy(1)-N(4)	110.68(19)
O(2)-Dy(1)-O(2a)	70.55(11)	O(2)-Dy(1)-O(2a)	69.99(17)
O(3)-Dy(1)-N(1)	134.39(15)	O(3)-Dy(1)-N(1)	135.0(2)
O(3)-Dy(1)-N(2)	115.00(15)	O(3)-Dy(1)-N(2)	114.9(2)
O(3)-Dy(1)-N(3)	80.05(15)	O(3)-Dy(1)-N(3)	80.4(2)
O(3)-Dy(1)-N(4)	69.39(15)	O(3)-Dy(1)-N(4)	69.7(2)
O(2a)-Dy(1)-O(3)	76.81(13)	O(2a)-Dy(1)-O(3)	76.30(19)
N(1)-Dy(1)-N(2)	71.68(15)	N(1)-Dy(1)-N(2)	71.9(2)
N(1)-Dy(1)-N(3)	66.25(15)	N(1)-Dy(1)-N(3)	66.0(2)
N(1)-Dy(1)-N(4)	74.61(15)	N(1)-Dy(1)-N(4)	74.7(2)
O(2a)-Dy(1)-N(1)	125.85(13)	O(2a)-Dy(1)-N(1)	125.98(18)
N(2)-Dy(1)-N(3)	130.55(15)	N(2)-Dy(1)-N(3)	130.1(2)
N(2)-Dy(1)-N(4)	65.42(15)	N(2)-Dy(1)-N(4)	65.8(2)

Table S3. The calculated results for Dy^{III} ions configuration of 1 and 2 by SHAPE 2.1 software.

Dy^{III} ion geometry analysis of 1.

HBPY-8	3 D6h	Hexagona	l bipyramic	ł								
CU-8	4 Oh	Cube										
SAPR-8	5 D4d	Square an	tiprism									
TDD-8	6 D2d	Triangular	dodecahee	dron								
JGBF-8	7 D2d	Johnson g	yrobifastigi	um J26								
JETBPY-8	8 D3h	Johnson e	elongated t	riangular b	pipyramid J14	1						
JBTPR-8	9 C2v	Biaugment	ted trigona	l prism J50								
BTPR-8	10 C2v	Biaugmen	ted trigona	al prism								
JSD-8	11 D2d	Snub diphe	enoid J84									
TT-8	12 Td 1	Friakis tetral	nedron									
ETBPY-8	13 D3h	Elongated	d trigonal k	pipyramid								
Structure [I	ML8]	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
ABOXIY	1	16.557,	10.661,	0.753,	1.900,	14.132,	27.250,	2.275,	2.069,	4.029,	11.292,	23. <mark>4</mark> 12

Dy^{III} ion geometry analysis of **2**.

HBPY-8	3 D6h	Hexagor	al bipyram	id		
CU-8	4 Oh	Cube				
SAPR-8	5 D4d	Square a	ntiprism			
TDD-8	6 D2d	Triangula	r dodecahe	edron		
JGBF-8	7 D2d	Johnson	gyrobifastic	gium J26		
JETBPY-8	8 D3h	Johnson	elongated	triangular b	ipyramid J1	4
JBTPR-8	9 C2v	Biaugmei	nted trigon	al prism J50		
BTPR-8	10 C2v	Biaugme	nted trigor	nal prism		
JSD-8	11 D2d	Snub dipl	nenoid J84			
TT-8	12 Td	Triakis tetra	ahedron			
ETBPY-8	13 D3ł	n Elongat	ed trigonal	bipyramid		
Structure	[ML8]	HBPY-8	CU-8	SAPR-8	TDD-8	JC

Structure [ML8] HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 ABOXIY , 16.627, 10.837, 0.730, 2.058, 14.212, 27.257,	JBTPR-8 BTPR-8 2.273, 2.111,	JSD-8 TT-8 ETBPY-8 4.209, 11.493, 23.310	
Configuration	ABOXIY, 1	ABOXIY, 2	
Hexagonal bipyramid (D_{6h})	16.557	16.627	
Cube (O_h)	10.661	10.837	
Square antiprism (D_{4d})	0.753	0.730	
Triangular dodecahedron (D_{2d})	1.900	2.058	
Johnson gyrobifastigium J26 (D_{2d})	14.132	14.212	
Johnson elongated triangular bipyramid J14 (D_{3h})	27.250	27.257	
Biaugmented trigonal prism J50 (C_{2v})	2.275	2.273	
Biaugmented trigonal prism (C_{2v})	2.069	2.111	
Snub siphenoid J84 (D_{2d})	4.029	4.209	
Triakis tetrahedron(T_d)	11.292	11.493	
Elongated trigonal bipyramid(D_{3h})	23.412	23.310	

Table S4. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 1.

-			
<i>T</i> (K)	χ _T	χs	α
2.4	2.244	0.371	0.139
2.8	2.230	0.389	0.129
3.2	2.175	0.391	0.119
3.4	2.139	0.393	0.113
3.8	2.057	0.378	0.103
4.2	1.970	0.363	0.092
4.4	1.926	0.347	0.087
5	1.799	0.302	0.072
5.5	1.700	0.236	0.063
6	1.609	0.132	0.059
7	1.448	0.000	0.039

<i>T</i> (K)	χт	χs	α
2.5	2.489	0.241	0.155
3	2.425	0.224	0.143
3.5	2.312	0.207	0.133
4	2.186	0.191	0.124
4.5	2.059	0.178	0.114
5	1.938	0.166	0.104
5.5	1.827	0.154	0.096
6	1.724	0.142	0.090
6.5	1.632	0.134	0.082
7	1.546	0.127	0.075
7.5	1.469	0.122	0.067
8	1.399	0.118	0.060
8.5	1.335	0.116	0.044
9	1.276	0.111	0.038
9.5	1.222	0.105	0.032
10	1.171	0.092	0.029
11	1.083	0.000	0.003
12	1.007	0.000	0.052

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 2.

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 1.

<i>T</i> (K)	χт	χs	α
2.4	2.277	0.144	0.215
2.8	2.186	0.145	0.204
3.2	2.061	0.131	0.181
3.4	1.930	0.112	0.149
3.8	1.811	0.096	0.119
4.2	1.703	0.086	0.093
4.4	1.605	0.078	0.076
5	1.517	0.072	0.065
5.5	1.365	0.052	0.055
6	1.299	0.020	0.052
7	1.240	0.000	0.047

Table S7. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest eight Kramers doublets (KDs) of individual Dy^{III} fragments of **1** and **2** using CASSCF/RASSI with MOLCAS 8.2.

	1			2		
KDs	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.268			0.093	
1	0.0	0.599	$\pm 15/2$	0.0	0.178	±15/2
		19.085			19.525	

		1.439			1.958	
2	66.9	2.016	±1/2	103.7	4.165	$\pm 5/2$
		16.380			14.906	
		0.155			1.359	
3	124.7	2.929	±13/2	144.0	3.800	±13/2
		12.921			11.932	
		1.199			1.569	
4	168.2	2.723	$\pm 3/2$	207.0	2.382	$\pm 3/2$
		14.329			10.232	
		7.667			0.943	
5	201.4	6.159	±7/2	232.9	3.434	$\pm 9/2$
		1.257			9.100	
		2.299			8.731	
6	233.9	6.215	±9/2	257.5	6.391	$\pm 7/2$
		10.973			3.919	
		0.503			0.751	
7	303.0	0.719	$\pm 5/2$	323.1	1.146	$\pm 1/2$
		18.134			17.632	
		0.001			0.005	
8	520.9	0.006	±11/2	561.3	0.011	±11/2
		19.715			19.725	

Table S8. Wave functions with definite projection of the total moment $| m_J >$ for the lowest two KDs of individual Dy^{III} fragments of **1** and **2** using CASSCF/RASSI with MOLCAS 8.2.

	E/cm^{-1}	wave functions	
	0.0	43% +15/2>	
1	0.0	49% -15/2>	
	66.9	10% ±13/2>+14% ±5/2>+24% ±3/2>+38% ±1/2>	
	0.0	90% +15/2>	
2	0.0	7% -15/2>	
	103.7	20% ±13/2>+17% ±5/2>+21% ±3/2>+25% ±1/2>	

Table S9. Exchange energies (cm⁻¹), the corresponding tunneling gaps (Δ_{tun}) and the main values of the g_z for the lowest two exchange doublets of 1 and 2.

	1			2		
	E/cm^{-1}	Δ_t	gz	E/cm^{-1}	Δ_t	gz
1	0.0	1.5×10-3	0.000	0.0	1.0×10-4	0.000
2	1.7	2.5×10-3	38.150	1.8	2.3×10-4	39.045