Electronic Supplementary Information

Optimization of Aggregation-Induced Phosphorescence Emission in Mononuclear Tricarbonyl Rhenium(I) Complexes: The Influence of Steric Hindrance and Isomerism

Jinhui Wang, Alexandre Poirot, Béatrice Delavaux-Nicot, Mariusz Wolff, Sonia Mallet-Ladeira, Jan Patrick Calupitan, Clémence Allain, Eric Benoist and Suzanne Fery-Forgues *

List of Tables

Table S1. Selected bond lengths (Å) for ReL3 and ReL4
Table S2. Selected angles (°) for ReL3 and ReL4 4
Table S3. Comparison between experimental and theoretical selected bond lengths and angles for ReL3 in CH ₂ Cl ₂ .
Table S4. Comparison between experimental and theoretical selected bond lengths and angles for ReL4 in CH ₂ Cl ₂ .
Table S5. Composition of the frontier molecular orbitals (%) and energy levels in CH ₂ Cl ₂ for complexes ReL3 and ReL4.
Table S6. Main electronic transitions for complex ReL3 in CH ₂ Cl ₂ calculated with TDDFT method at the PBE1PBE/LANL2DZ level.
Table S7. Main electronic transitions for complex ReL4 in CH ₂ Cl ₂ calculated with TDDFT method at the PBE1PBE/LANL2DZ level.
Table S8. Four calculated singlet states for complexes ReL3 and ReL4 in S1 optimized geometry calculated with TDDFT method at PBE1PBE/LANL2DZ level.
Table S9. Calculated phosphorescence emission energies of ReL3 and ReL4, in comparison to the experimental values recorded in CH ₂ Cl ₂ . 7
Table S10. Occupancy and hybridization of the calculated natural bond orbitals (NBOs) between the rhenium and the carbonyl ligands for complexes ReL3 and ReL4.
Table S11. Atomic charges from the Natural Population Analysis (NPA) for ReL3 and ReL4.
Table S12. Natural populations of the $5d_{xy}$, $5d_{xz}$, $5d_{yz}$, $5d_{x^2-y^2}$ and $5d_z^2$ orbitals of the central atom in ReL3 and ReL4
Table S13. Absolute electronegativity, absolute hardness, dipole moment (μ), electrophilicity index (ω) and global softness (σ) of complexes ReL3 and ReL4 in CH ₂ Cl ₂
Table S14. Selected electrochemical data of ligands L3, L4, and complexes ReL3, ReL4.
Table S15. Experimental electrochemical data used, and calculated values of the energy gaps (E_g) forcompounds ReL3 and ReL4
Table S16. Results of the emission decay measurements of the complexes in CH ₂ Cl ₂ 9
Table S17. Spectroscopic data of the complexes in acetonitrile and methanol. 9
Table S18. Results of the emission decay measurements of the complexes in the solid state (pristine powder10

List of Figures

Figure S1. Crystal packing, view along <i>a</i> (ReL3) and <i>b</i> (ReL4)
Figure S2. Orientation of two neighboring molecules in the crystal cell of ReL4 and plan view of these molecules.
Figure S3. Isodensity plots of the frontier molecular orbitals of complexes ReL3 and ReL4 in CH ₂ Cl ₂ : Unoccupied orbitals
Figure S4. Isodensity plots of the frontier molecular orbitals of complexes ReL3 and ReL4 in CH ₂ Cl ₂ : Occupied orbitals
Figure S5. Spin density distribution for the lowest triplet state T_1 of complexes ReL3 and ReL4 in CH ₂ Cl ₂ . Calculations based on the optimized triplet state with DFT method at the PBE1PBE/LanL2DZ level14
Figure S6. Molecular orbital diagrams of ReL3 and ReL414
Figure S7. OSWV: anodic and cathodic scans of complex ReL3
Figure S8. Segmented cyclic voltammograms of complex ReL3 , in oxidation part at 0.2 V/s, and of the first oxidation and reduction processes at, respectively, 0.2 and 1.0 V/s
Figure S9. Cyclic voltammograms of the first reduction process of ReL3 at, respectively, 0.2, 0.5, and 1.0 V/s.
Figure S10. OSWV: anodic and cathodic scans of ligand ReL4
Figure S11. Segmented cyclic voltammograms of ligand ReL4 , in oxidation part, and of the first oxidation and reduction processes scanning in the two different directions at 0.2 V/s
Figure S12. Cyclic voltammograms of the first reduction process of ReL4 at respectively, 0.2, 0.5, and 1.0 V/s
Figure S13. OSWV: anodic and cathodic scans of ligand L317
Figure S14. Cyclic voltammograms of ligand L3 at 0.2 V/s toward anodic and cathodic potential, and of its first reduction process at respectively, 0.2, 1.0, 10.0, and 20.0 V/s
Figure S15. OSWV anodic and cathodic scans of ligand L417
Figure S16. Cyclic voltammograms of ligand L4 at 0.2 V/s, and at respectively, 0.1, 1.0, and 5.0 V/s17
Figure S17. Normalized emission spectra of complexes ReL3 and ReL4 in CH ₂ Cl ₂ and corresponding samples illuminated by a hand-held UV lamp (365 nm)
Figure S18. Photoluminescence decay curves of ReL3 and ReL4 in CH ₂ Cl ₂
Figure S19. Spin density distribution for the lowest triplet state T ₁ of complexes ReL3 and ReL4 in CH ₂ Cl ₂
Figure S20. Absorption spectra of complexes ReL3 and ReL4 at constant concentration in water/acetonitrile mixtures
Figure S21. Proton numbering scheme for NMR

Tables

Table S1. Selected bond lengths (Å) for both molecules of the asymmetric unit of **ReL3** and for **ReL4**. The atoms were numbered like on the molecular views. For the sake of comparison, each line corresponds to the same bond in both complexes.

Bond lengths	ReL3	Bond lengths	ReL4
Re(1)-C(2) / Re(2)-C(27)	1.94(2) / 1.89(2)	Re(1)-C(1)	1.90(1)
Re(1)-C(1) / Re(2)-C(28)	1.92(2) / 1.95(2)	Re(1)-C(2)	1.92(1)
Re(1)-C(200) / Re(2)-C(400)	2.02(5) / 2.04(4)	Re(1)-C(3)	1.90(1)
Re(1)-N(1) / Re(2)-N(6)	2.146(11) / 2.216(16)	Re(1)-N(1)	2.198(4)
Re(1)-N(2) / Re(2)-N(7)	2.122(13) / 2.126(12)	Re(1)-N(2)	2.155(5)
Re(1)-Cl(2) / Re(2)-Cl(4)	2.425(14) / 2.433(15)	Re(1)-Cl(1)	2.488(2)
C(2)-O(2) / C(27)-O(4)	1.13(2) / 1.20(2)	C(1)-O(1)	1.16(1)
C(1)-O(1) / C(28)-O(5)	1.13(2) / 1.14(2)	C(2)-O(2)	1.15(1)
C(200)-O(200) / C(400)-O(400)	1.13(6) / 1.15(5)	C(3)-O(3)	1.15(1)

0300

3

Table S2. Selected angles (°) for both molecules of the asymmetric unit of **ReL3** and for **ReL4**. The atoms were numbered like on the molecular views. For the sake of comparison, each line corresponds to the same angle in both complexes.

Bond angles	ReL3	Bond angles	ReL4
C(2)-Re(1)-C(1)/C(27)-Re(2)-C(28)	87.1(7)/ 87.5(9)	C(1)-Re(1)-C(2)	89.7(2)
C(2)-Re(1)-C(200)/C(27)-Re(2)-C400)	86.3(13)/78.8(19)/	C(1)-Re(1)-C(3)	87.2(3)
C(1)-Re(1)-C(200)/C(28)-Re(2)-C400)	86.3(13)/90(2)	C(2)-Re(1)-C(3)	91.0(3)
C(2)-Re(1)-N(2)/C(27)-Re(2)-N(7)	173.0(6)/ 170.6(8)	C(1)-Re(1)-N(2)	170.8(2)
C(1)-Re(1)-N(2)/C(28)-Re(2)-N(7)	99.7(6)/ 101.6(5)	C(2)-Re(1)-N(2)	97.5(2)
C(200)-Re(1)-N(2)/C(400)-Re(2)-N(7)	95.5(13)/ 98.7(18)	C(3)-Re(1)-N(2)	98.4(2)
C(2)-Re(1)-N(1)/C(27)-Re(2)-N(6)	99.4(6)/97.4(9)	C(1)-Re(1)-N(1)	98.2(2)
C(1)-Re(1)-N(1)/C(28)-Re(2)-N(6)	172.9(5)/ 175.0(6)	C(2)-Re(1)-N(1)	172.0(2)
C(200)-Re(1)-N(1)/C(400)-Re(2)-N(6)	96.8(13)/90(2)	C(3)-Re(1)-N(1)	90.9(3)
N(2)-Re(1)-N(1)/N(7)-Re(2)-N(6)	73.7(5)/73.5(5)	N(2)-Re(1)-N(1)	74.5(2)
C(2)-Re(1)-Cl(2)/C(27)-Re(2)-Cl(4)	96.1(7)/ 95.9(8)	C(1)-Re(1)-Cl(1)	92.6(2)
C(1)-Re(1)-Cl(2)/C(28)-Re(2)-Cl(4)	91.9(6)/ 97.5(6)	C(2)-Re(1)-Cl(1)	94.1(2)
C(200)-Re(1)-Cl(2)/C(400)-Re(2)-Cl(4)	176.9(12)/171.1(19)	C(3)-Re(1)-Cl(1)	175.0(2)
N(2)-Re(1)-Cl(2)/N(7)-Re(2)-Cl(4)	82.4(5)/85.4(5)	N(2)-Re(1)-Cl(1)	81.2(1)
N(1)-Re(1)-Cl(2)/N(6)-Re(2)-Cl(4)	84.7(5)/83.3(5)	N(1)-Re(1)-Cl(1)	84.2(1)
O(2)-C(2)-Re(1)/O(4)-C(27)-Re(2)	177.0(16)/ 178(3)	O(1)-C(1)-Re(1)	179.4(6)
O(1)-C(1)-Re(1)/O(5)-C(28)-Re(2)	169.9(17)/ 178.8(18)	O(2)-C(2)-Re(1)	178.9(6)
O(200)-C(200)-Re(1)/O(400)-C(400)-Re(2)	178(4)/151(5)	O(3)-C(3)-Re(1)	175.8(6)

Table S3. Comparison between experimental and theoretical selected bond lengths	(Å)	and
angles (°) for ReL3 in CH ₂ Cl ₂ .		

		Optimized	1				Optimized		
Bond lengths	Exp.	So	S 1	T 1	Bond angles	Exp.	So	S 1	T 1
Re(1)-C(1)	1.92(2)	1.916	1.958	1.986	C(1)-Re(1)-C(2)	87.1(7)	89.69	85.18	88.40
Re(1)-C(2)	1.941(19)	1.912	1.949	1.933	C(1)-Re(1)-C(100)	86.7(17)	90.57	90.32	89.24
Re(1)-C(100)	1.97(6)	1.896	1.954	1.950	C(2)-Re(1)-C(100)	85.8(17)	90.37	93.63	92.49
Re(1)-N(1)	2.122(13)	2.212	2.153	2.164	C(1)-Re(1)-N(1)	99.7(6)	98.45	100.54	98.78
Re(1)-N(2)	2.146(11)	2.146	2.097	2.042	C(2)-Re(1)-N(1)	173.0(6)	170.73	173.86	171.82
Re(1)-Cl(1)	2.473(11)	2.524	2.421	2.455	C(100)-Re(1)-N(1)	93.1(16)	93.95	88.61	91.52
					C(1)-Re(1)-N(2)	172.9(5)	171.38	176.45	175.29
C(1)-O(1)	1.13(2)	1.160	1.151	1.148	C(2)-Re(1)-N(2)	99.4(6)	97.58	98.11	96.31
C(2)-O(2)	1.125(19)	1.158	1.150	1.153	C(100)-Re(1)-N(2)	91.0(17)	94.01	90.81	90.41
C(100)-O(100)	1.16(8)	1.164	1.148	1.149	N(1)-Re(1)-N(2)	73.7(5)	73.96	76.13	76.52
					C(1)-Re(1)-Cl(1)	97.8(6)	91.56	90.51	86.97
					C(2)-Re(1)-Cl(1)	92.4(6)	92.32	91.82	91.68
					C(100)-Re(1)-	175.1(17)	176.58	174.54	174.28
					Cl(1)				
					N(1)-Re(1)-Cl(1)	88.0(4)	83.09	85.93	84.83
					N(2)-Re(1)-Cl(1)	84.7(5)	83.55	88.05	93.01
					Re(1)-C(1)-O(1)	169.9(17)	179.30	178.59	179.07
					Re(1)-C(2)-O(2)	177.0(16)	178.81	179.89	179.03
					Re(1)-C(100)-	171(5)	179.83	179.14	179.49
					O(100)				

Bond	Б	Optimize	d			T	Optimize	d	
lengths	Exp.	S ₀	S ₁	T ₁	Bond angles	Exp.	S ₀	S ₁	T ₁
Re(1)-C(1)	1.902(7)	1.916	1.957	1.988	C(1)-Re(1)-C(2)	89.7(2)	89.69	85.14	88.55
Re(1)-C(2)	1.920(7)	1.913	1.949	1.932	C(1)-Re(1)-C(3)	87.2(3)	90.57	90.42	89.15
Re(1)-C(3)	1.903(8)	1.897	1.955	1.951	C(2)-Re(1)-C(3)	91.0(3)	90.35	93.52	92.23
Re(1)-N(1)	2.198(4)	2.212	2.155	2.169	C(1)-Re(1)-N(1)	98.2(2)	98.47	100.61	98.77
Re(1)-N(2)	2.155(5)	2.146	2.097	2.041	C(2)-Re(1)-N(1)	172.0(2)	171.34	173.88	171.72
Re(1)-Cl(1)	2.4882(15)	2.524	2.419	2.451	C(3)-Re(1)-N(1)	90.9(3)	93.96	88.56	91.74
					C(1)-Re(1)-N(2)	170.8(2)	171.34	176.37	175.13
C(1)-O(1)	1.160(7)	1.916	1.150	1.148	C(2)-Re(1)-N(2)	97.5(2)	97.56	98.19	96.31
C(2)-O(2)	1.148(7)	1.913	1.150	1.153	C(3)-Re(1)-N(2)	98.4(2)	94.09	90.83	90.37
C(3)-O(3)	1.151(8)	1.897	1.148	1.149	N(1)-Re(1)-N(2)	74.49(18)	73.96	76.01	76.40
					C(1)-Re(1)-Cl(1)	92.64(18)	91.50	90.52	86.87
					C(2)-Re(1)-Cl(1)	94.06(19)	92.50	91.92	91.74
					C(3)-Re(1)-Cl(1)	175.0(2)	176.49	174.54	174.30
					N(1)-Re(1)-Cl(1)	84.20(13)	82.93	85.98	84.85
					N(2)-Re(1)-Cl(1)	81.15(13)	83.50	87.92	93.25
					Re(1)-C(1)-O(1)	179.4(6)	179.27	178.65	179.14
					Re(1)-C(2)-O(2)	178.9(6)	178.80	179.86	178.96
					Re(1)-C(3)-O(3)	175.8(6)	179.81	179.17	179.55

Table S4. Comparison between experimental and theoretical selected bond lengths (Å) and angles (°) for **ReL4** in CH_2Cl_2 .

Table S5. Composition of the frontier molecular orbitals (%) and energy levels in CH_2Cl_2 for complexes ReL3 and ReL4.

Orbit	.1	Energy	MO	Contrib	ution (%)		Main hand time
Orbita	11	(eV)	Re	CO	Cl	Pyta	PBO	- Main bond type
ReL3	(GAP = 4.07 eV))						
142	LUMO+5	-0.71	30	44	0	0	28	$p(Re) + \pi^*(CO) + \pi^*(PBO)$
141	LUMO+4	-0.81	21	43	0	6	30	$p(Re) + \pi^*(CO) + \pi^*(PBO)$
140	LUMO+3	-0.85	12	19	0	13	56	$\pi^*(\text{PBO}) + \pi^*(\text{Pyta})$
139	LUMO+2	-1.63	0	1	0	95	4	$\pi^*(Pyta)$
138	LUMO+1	-2.05	0	0	0	2	97	π*(PBO)
137	LUMO	-2.52	3	4	1	91	2	$\pi^*(Pyta)$
136	HOMO	-6.59	52	24	19	4	0	$d(Re) + \pi(CO) + p(Cl)$
135	HOMO-1	-6.71	52	22	22	4	0	$d(Re) + \pi(CO) + p(Cl)$
134	HOMO-2	-6.87	0	0	0	2	98	$\pi(\text{PBO})$
133	HOMO-3	-7.15	69	30	1	0	0	$d(Re) + \pi(CO)$
132	HOMO-4	-7.66	0	0	0	0	100	$\pi(\text{PBO})$
131	HOMO-5	-7.81	2	0	28	68	2	$\pi(\text{Pyta}) + \pi(\text{Cl})$
ReL4	(GAP = 4.06 eV))						
126	LUMO+5	-0.72	37	57	0	1	6	$p(Re) + \pi^*(CO)$
125	LUMO+4	-0.83	34	59	0	7	0	$p(Re) + \pi^*(CO)$
124	LUMO+3	-1.14	0	0	0	12	87	$\pi^*(PBO) + \pi^*(Pyta)$
123	LUMO+2	-1.66	0	1	0	92	7	$\pi^*(Pyta)$
122	LUMO+1	-2.23	0	0	0	3	97	π*(PBO)
121	LUMO	-2.54	3	4	1	91	2	$\pi^*(Pyta)$
120	HOMO	-6.60	52	24	20	4	0	$d(Re) + \pi(CO) + p(Cl)$
119	HOMO-1	-6.72	52	22	22	5	0	$d(Re) + \pi(CO) + p(Cl)$
118	HOMO-2	-6.93	0	0	0	1	99	$\pi(\text{PBO})$
117	HOMO-3	-7.16	69	30	1	0	0	$d(Re) + \pi(CO)$
116	HOMO-4	-7.44	0	0	0	0	100	π(PBO)
115	HOMO-5	-7.82	2	0	29	69	0	$\pi(Pyta) + \pi(Cl)$

Pyta: pyridyltriazole, PBO: 2-phenylbenzoxazole

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f
$S_0 \rightarrow S_1$	$HOMO \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	3.07	403.6	0.0012
$S_0 \rightarrow S_2$	$H - 1 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	3.28	378.3	0.1294
$S_0 \rightarrow S_6$	$H - 2 \rightarrow L + 1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})$	ILCT	4.12	300.8	1.2509
$S_0 \rightarrow S_7$	$HOMO \rightarrow L + 1$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{PBO})$	LMCT/LLCT	4.17	297.5	0.1004
	$HOMO \rightarrow L + 2$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	LMCT/LLCT			
$S_0 \rightarrow S_{12}$	$H - 5 \rightarrow LUMO$	$\pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	ILCT/LLCT	4.44	279.5	0.1690
$S_0 \rightarrow S_{16}$	$H - 7 \rightarrow LUMO$	$\pi(Cl) \rightarrow \pi^*(Pyta)$	LLCT	4.66	266.2	0.0343
$S_0 \rightarrow S_{22}$	$H - 9 \rightarrow LUMO$	$\pi(\text{Cl}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT	4.86	255.2	0.1182
$S_0 \rightarrow S_{24}$	$H - 6 \rightarrow L + 1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})$	ILCT	4.94	251.1	0.0346
$S_0 \rightarrow S_{25}$	$H - 3 \rightarrow L + 4$	$d(Re) + \pi(CO) \rightarrow p(Re) + \pi^*(CO) + \pi^*(PBO)$		5.08	244.2	0.0452
$S_0 \rightarrow S_{30}$	$H - 5 \rightarrow L + 2$	$\pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	ILCT/LLCT	5.35	231.8	0.1204
$S_0 \rightarrow S_{31}$	$H - 2 \rightarrow L + 3$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO}) + \pi^*(\text{Pyta})$	ILCT/LLCT	5.36	231.3	0.0440
$S_0 \rightarrow S_{42}$	$H - 7 \rightarrow L + 2$	$\pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	LLCT	5.60	221.3	0.0368
	$H - 7 \rightarrow L + 1$	$\pi(\text{Cl}) \rightarrow \pi^*(\text{PBO})$	LLCT			
$S_0 \rightarrow S_{50}$	$H - 2 \rightarrow L + 7$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})$	ILCT	5.76	215.3	0.0948
$S_0 \rightarrow S_{72}$	$H - 5 \rightarrow L + 5$	$\pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow p(\text{Re}) + \pi^*(\text{CO}) + \pi^*(\text{PBO})$	LMCT/LLCT	6.18	200.5	0.1067

Table S6. Main electronic transitions for complex **ReL3** in CH₂Cl₂ calculated with TDDFT method at the PBE1PBE/LANL2DZ level.

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-toligand charge transfer; ILCT: intraligand charge transfer.

Table S7. Main	electronic tr	ransitions fo	or complex	ReL4 in	CH_2Cl_2	calculated	with	TDDFT
method at the Pl	BE1PBE/LA	NL2DZ lev	vel.					

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f
$S_0 \rightarrow S_1$	$HOMO \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	3.06	404.7	0.0012
$S_0 \rightarrow S_2$	$H - 1 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	3.27	379.2	0.1323
$S_0 \rightarrow S_4$	$H - 2 \rightarrow LUMO$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{Pyta})$	LLCT	3.90	317.9	0.0331
$S_0 \rightarrow S_7$	$H - 2 \rightarrow L + 1$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})$	ILCT	4.03	307.3	1.0069
$S_0 \rightarrow S_{12}$	$H - 5 \rightarrow LUMO$	$\pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	ILCT/LLCT	4.43	279.8	0.1628
$S_0 \rightarrow S_{18}$	$H - 6 \rightarrow LUMO$	$\pi(\text{Cl}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT	4.64	267.1	0.0393
$S_0 \rightarrow S_{21}$	$H - 7 \rightarrow LUMO$	$\pi(\text{PBO}) + \pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT	4.84	256.1	0.1282
	$H - 8 \rightarrow LUMO$	$\pi(\text{PBO}) + \pi(\text{Cl}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT			
$S_0 \rightarrow S_{28}$	$H - 3 \rightarrow L + 4$	$d(Re) + \pi(CO) \rightarrow p(Re) + \pi^*(CO)$	MLCT/ILCT	5.10	243.3	0.0625
$S_0 \rightarrow S_{30}$	$H - 5 \rightarrow L + 2$	$\pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	ILCT/LLCT	5.32	232.9	0.1095
$S_0 \rightarrow S_{33}$	$H - 4 \rightarrow L + 2$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{Pyta})$	LLCT	5.39	229.9	0.0326
$S_0 \rightarrow S_{36}$	$H - 10 \rightarrow LUMO$	$\pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	LLCT	5.45	227.4	0.0340
$S_0 \rightarrow S_{37}$	$H - 2 \rightarrow L + 6$	$\pi(\text{PBO}) \rightarrow \pi^*(\text{PBO})$	ILCT	5.46	227.1	0.0361
$S_0 \rightarrow S_{39}$	$H - 8 \rightarrow L + 1$	$\pi(\text{PBO}) + \pi(\text{Cl}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{PBO})$	ILCT/LLCT	5.49	225.7	0.0409
$S_0 \rightarrow S_{42}$	$H - 9 \rightarrow L + 1$	$\pi(\text{PBO}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{PBO})$	ILCT/LLCT	5.60	221.2	0.1271
$S_0 \rightarrow S_{43}$	$H - 6 \rightarrow L + 2$	$\pi(\text{Cl}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT	5.62	220.6	0.1087
$S_0 \rightarrow S_{55}$	$H - 3 \rightarrow L + 10$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{CO}) + \pi^*(\text{Pyta})$	MLCT/LLCT	5.87	211.1	0.0347
$S_0 \rightarrow S_{56}$	$H - 8 \rightarrow L + 2$	$\pi(\text{PBO}) + \pi(\text{Cl}) + \pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT	5.90	210.3	0.0812
	$H - 7 \rightarrow L + 2$	$\pi(\text{PBO}) + \pi(\text{Pyta}) + \pi(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	LLCT/ILCT			
$S_0 \rightarrow S_{69}$	$H - 13 \rightarrow LUMO$	$\pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta})$	ILCT	6.16	201.2	0.0560

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer. **Table S8.** Four calculated singlet states for complexes **ReL3** and **ReL4** in S₁ optimized geometry calculated with TDDFT method at PBE1PBE/LANL2DZ level.

		KeLS				
State	Contribution	Assignment		E _{calc} /eV	λ_{calc} / nm	f
1	$HOMO \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	2.29	540.4	0.0025
2	$H - 1 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	2.70	458.8	0.1929
3	$H - 3 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{PBO}) \rightarrow \pi^*(\text{Pyta})$	MLCT/LLCT	2.99	415.2	0.0002
4	$H - 2 \rightarrow LUMO$	$\pi(\text{PBO}) + d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{Pyta})$	LLCT/MLCT	3.45	359.1	0.1404
		ReL4				
State	Contribution	A anti-		T / T		
State	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f
1	$\frac{\text{Contribution}}{\text{HOMO} \rightarrow \text{LUMO}}$	$\frac{\text{Assignment}}{\text{d(Re)} + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})}$	MLCT/LLCT	E _{calc} /eV 2.25	$\frac{\lambda_{\text{calc}}}{550.8}$	f 0.0042
1 2	HOMO \rightarrow LUMO H - 1 \rightarrow LUMO	$\frac{d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})}{d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})}$	MLCT/LLCT MLCT/LLCT	Ecalc /eV 2.25 2.65	$\frac{\lambda_{\text{calc}} / \text{nm}}{550.8}$ 467.1	f 0.0042 0.2147
1 2 3	$HOMO \rightarrow LUMO$ $H - 1 \rightarrow LUMO$ $H - 3 \rightarrow LUMO$	Assignment $d(Re) + \pi(CO) + p(Cl) \rightarrow \pi^{*}(Pyta)$ $d(Re) + \pi(CO) + p(Cl) \rightarrow \pi^{*}(Pyta)$ $d(Re) + \pi(CO) + \pi(PBO) \rightarrow \pi^{*}(Pyta)$	MLCT/LLCT MLCT/LLCT MLCT/LLCT	Ecalc /eV 2.25 2.65 2.94	λ_{calc} / nm 550.8 467.1 421.0	f 0.0042 0.2147 0.0008
1 2 3 4	$\begin{array}{l} \text{HOMO} \rightarrow \text{LUMO} \\ \text{H} - 1 \rightarrow \text{LUMO} \\ \text{H} - 3 \rightarrow \text{LUMO} \\ \text{HOMO} \rightarrow \text{L} + 1 \end{array}$	$\frac{d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})}{d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{Pyta})}$ $\frac{d(\text{Re}) + \pi(\text{CO}) + \pi(\text{PBO}) \rightarrow \pi^*(\text{Pyta})}{d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) \rightarrow \pi^*(\text{PBO})}$	MLCT/LLCT MLCT/LLCT MLCT/LLCT MLCT/LLCT	Ecalc /eV 2.25 2.65 2.94 3.42	$\frac{\lambda_{\text{calc}} / \text{nm}}{550.8}$ 467.1 421.0 363.1	f 0.0042 0.2147 0.0008 0.3532
State	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f

Molecular orbital characters in S_0 geometry are different than in S_1 geometry or T_1 geometry.

Table S9. Calculated phosphorescence emission energies of ReL3 and ReL4, in comparison to the experimental values recorded in CH_2Cl_2 .

Cnd	DFT		TD-DFT				λ _{exp} (nm)
Сра	Δ <i>E</i> _{T1} – <i>S</i> ₀ (eV/nm)	Character	Major contribution (C _i coefficient)	E (eV)	λ _{cal} (nm)	Character	
ReL3	2.04/607.8	³ MLCT/ ³ LLCT/ ³ IL	$L \rightarrow H (0.675)$	1.93	642.8	$^{3}MLCT/^{3}LLCT$ d(Re)+ π (CO)+p(Cl) $\rightarrow \pi^{*}$ (Pyta)	627
ReL4	1.98/626.2	³ MLCT/ ³ LLCT/ ³ IL	$L \to H (0.672)$	1.88	658.6	$^{3}MLCT/^{3}LLCT$ d(Re)+ π (CO)+p(Cl) $\rightarrow \pi^{*}$ (Pyta)	632

 ΔE_{T1} -S₀ is the energy difference between the ground singlet and triplet states.

Table S10. Occupancy and hybridization of the calculated natural bond orbitals (NBC)s)
between the rhenium and the carbonyl ligands for complexes ReL3 and ReL4 .	

ReL3						
Bond	Occupancy	Hybridization of NBO				
Re(1)-C(1)	1.965 (0.206)	$0.6177 (sp^{0.67}d^{2.56})_{Re} + 0.7864 (sp^{0.52})_{C}$	38.16%	61.84%		
Re(1)-C(2)	1.966 (0.200)	$0.6211 (sp^{0.63}d^{2.59})_{Re} + 0.7838 (sp^{0.53})_{C}$	38.57%	61.43%		
Re(1) - C(3)	1.919 (0.102)	$0.5969 (sp^{2.89}d^{3.14})_{Re} + 0.8023 (sp^{0.53})_{C}$	35.63%	64.37%		
C(1)–O(1)	1.997 (0.016)	$0.5583 (sp^{1.90})_{\rm C} + 0.8297 (sp^{1.20})_{\rm O}$	31.16%	68.84%		
	1.996 (0.219)	$0.4905 (p)_{C} + 0.8715 (p)_{O}$	24.06%	75.94%		
	1.995 (0.194)	$0.4953 (p)_{C} + 0.8687 (p)_{O}$	24.53%	75.47%		
C(2)–O(2)	1.997 (0.025)	$0.5558 (sp^{1.98})_{\rm C} + 0.8313 (sp^{1.31})_{\rm O}$	30.89%	69.11%		
	1.996 (0.208)	$0.4915 (p)_{C} + 0.8709 (p)_{O}$	24.16%	75.84%		
	1.995 (0.182)	0.4979 (p) _C + 0.8672 (p) _O	24.79%	75.21%		
C(3)–O(3)	1.997 (0.023)	$0.5583 (sp^{1.90})_{\rm C} + 0.8296 (sp^{1.20})_{\rm O}$	31.17%	68.83%		
	1.997 (0.246)	$0.4879 (p)_{C} + 0.8729 (p)_{O}$	23.80%	76.20%		
	1.995 (0.210)	$0.4966 (p)_{C} + 0.8680 (p)_{O}$	24.66%	75.34%		
		ReL4				
Bond	Occupancy	Hybridization of NBO				
Re(1)-C(1)	1.965 (0.206)	$0.6178 (sp^{0.67}d^{2.56})_{Re} + 0.7864 (sp^{0.52})_{C}$	38.16%	61.84%		
Re(1)-C(2)	1.966 (0.200)	$0.6210 (sp^{0.63}d^{2.58})_{Re} + 0.7838 (sp^{0.53})_{C}$	38.57%	61.43%		
Re(1)-C(3)	1.920 (0.103)	$0.5970 (sp^{2.89}d^{3.15})_{Re} + 0.8022 (sp^{0.53})_{C}$	35.64%	64.36%		
C(1)–O(1)	1.997 (0.016)	$0.5582 (sp^{1.90})_{\rm C} + 0.8297 (sp^{1.20})_{\rm O}$	31.16%	68.84%		
	1.996 (0.219)	0.4905 (p) _C + 0.8714 (p) _O	24.06%	75.94%		
	1.995 (0.194)	$0.4954 (p)_{C} + 0.8687 (p)_{O}$	24.54%	75.46%		
C(2)–O(2)	1.997 (0.025)	$0.5558 (sp^{1.98})_{\rm C} + 0.8313 (sp^{1.31})_{\rm O}$	30.89%	69.11%		
	1.996 (0.208)	0.4916 (p) _C + 0.8708 (p) _O	24.16%	75.84%		
	1.995 (0.182)	$0.4980 (p)_{C} + 0.8672 (p)_{O}$	24.80%	75.20%		
C(3)–O(3)	1.997 (0.024)	$0.5582 (sp^{1.96})_{\rm C} + 0.8297 (sp^{1.30})_{\rm O}$	31.16%	68.84%		
	1.997 (0.245)	0.4879 (p) _C + 0.8729 (p) _O	23.81%	76.19%		
	1.995 (0.210)	$0.4968 (p)_{C} + 0.8679 (p)_{O}$	24.68%	75.32%		

Atom		Charge
	ReL3	ReL4
Re(1)	-0.99	-0.99
C(1)	+0.76	+0.76
C(2)	+0.78	+0.78
C(3)	+0.74	+0.74
O(1)	-0.48	-0.48
O(2)	-0.48	-0.48
O(3)	-0.50	-0.50
N(1)	-0.39	-0.38
N(2)	-0.23	-0.23
Cl(1)	-0.46	-0.46

Table S11. Atomic charges from the Natural Population Analysis (NPA) for ReL3 and ReL4.

Table S12. Natural populations of the $5d_{xy}$, $5d_{xz}$, $5d_{yz}$, $5d_{x^2-y^2}$ and $5d_{z^2}$ orbitals of the central atom in **ReL3** and **ReL4**.

Orbital	Natural population			
	ReL3 ReL4			
d _{xy}	1.149	1.007		
d _{xz}	1.219	1.496		
dyz	1.327	1.557		
$d_x^2 - y^2$	1.519	1.538		
d_z^2	1.471	1.087		

Table S13. Absolute electronegativity, absolute hardness, dipole moment (μ), electrophilicity index (ω) and global softness (σ) of complexes **ReL3** and **ReL4** in CH₂Cl₂.

Denometons	Complex				
Farameters	ReL3	ReL4			
E _{HOMO} (eV)	-6.59	-6.60			
E _{LUMO} (eV)	-2.52	-2.54			
Energy gap ΔE (eV)	4.07	4.06			
Electronegativity μ (eV)	4.56	4.57			
Hardness η (eV)	2.04	2.03			
Dipole moment μ (Debye)	20.86	19.76			
Electrophilicity ω (eV)	5.10	5.14			
Softness σ (1/eV)	0.49	0.49			

Table S14. Selected electrochemical data of ligands L3, L4 $[1.0 \times 10^{-3} \text{ M}]$, and complexes **ReL3**, **ReL4** $[6.5 \times 10^{-4} \text{ M}]$. Values determined by OSWV on a Pt working electrode in CH₂Cl₂ + 0.1 M *n*-Bu₄NBF₄ at room temperature.^{a,b} Ferrocene was used as internal reference.

	Oxidation		Reduction		
	E_2	E_1	E_1	E_2	E_3
L1			-1.96		
L3		1.72 ^c	-1.53 ^e	-2.05	
L4		2.07	-1.84	-2.20	
ReL1	1.74	1.44	-1.31 ^d	-1.90	
ReL3	1.75	1.44	-1.32 ^d	-2.02	
ReL4	1.73	1.44	-1.28^{f}	-1.58	-1.83 ^g

^a OSWVs were obtained using a sweep width of 20 mV, a frequency of 20 Hz, and a step potential of 5 mV. ^b Potential values in Volts vs. SCE (Fc⁺/Fc is observed at 0.55 V \pm 0.01 V vs. SCE). L1 and ReL1 data from ref.[8] °Very broad peak, not well-distinguishable. ^d quasi-reversible at 1 V/s. °Minor intensity, becomes quasireversible around 20 V/s. ^f Quasi-reversible process at 0.2 V/s. ^g With a shoulder at the right side.

Compound	E _{onset} ox (V)	E _{onset} red (V)	E _{номо} (eV)	E _{LUMO} (eV)	E_g^{el} (eV)	${E_{calc}}^*$ (eV)	λ _{calc} * (nm)
ReL3	1.34	-1.21	-6.08	-3.53	2.55	2.70	458.8
ReL4	1.34	-1.16	-6.08	-3.58	2.50	2.65	467.1

Table S15. Experimental electrochemical data used, and calculated values of the energy gaps (E_g) for compounds **ReL3** and **ReL4**.

*Values obtained from theoretical study, see Table S8.

Evaluation of the energy gap values (E_g) for the Re complexes.

The onset oxidation and reduction potentials (E_{onset} ox, E_{onset} red) were measured by cyclic voltammetry in volt *versus* SCE. The CVs were carried out at a potential scan rate of 200 mV s⁻¹ at room temperature. The HOMO and LUMO energy levels (E_{HOMO} and E_{LUMO}) in electron volt (eV) were calculated according to the empirical equations (1) and (2):^[1]

 E_{HOMO} (eV) = -e (E_{onset} ox (V vs. SCE) + 4.74 V)

Eq(1) $E_{\text{LUMO}} (\text{eV}) = -\text{e} (E_{\text{onset}} \text{ red} (\text{V vs. SCE}) + 4.74 \text{ V}) \quad Eq(2),$

and the energy gap value was obtained as follows: $E_g^{el} = (E_{LUMO} - E_{HOMO})$

The differences observed for the estimation of the energy gaps using experimental methods or theoretical calculations are well known. See for example: R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. 1999, 121, 3414-3420.

^[1] a) Y. Zhou, J. W. Kim, R. Nandhakumar, M. J. Kim, E. Cho, Y. S. Kim, Y. H. Jang, C. Lee, S. Han, K. M. Kim, J.-J. Kim, J. Yoon, Chem. Commun. 2010, 46, 6512-6514 and references therein; b) G. V. Loukova, Chem. Phys. Lett. 2002, 353, 244-252.

Table S16. Results of the emission decay measurements of the complexes in CH₂Cl₂. Luminescence decay times (τ_i) with their respective fractions of intensity (f_i) and normalized pre-exponential factor (a_i) , defined by the multiexponential analysis of the decay curves: $I_{\rm F}(t) = \sum a_i \times \exp(-t/\tau_i)$ and $f_i = a_i \times \tau_i/(\sum a_i \times \tau_i)$. Excitation wavelength: 380 nm.

	τ_i (ns)	fi	ai
ReL3	$\tau_1 = 3.9$	0.004	0.1
	$\tau_2 = 100$	0.996	0.9
ReL4	$\tau_1 = 3.7$	0.01	0.13
	$ au_2 = 80$	0.99	0.87
ReL1 ^a	$\tau_1 = 3.7$	0.03	
	$ au_2 = 75$	0.97	

a: From ref. [8]

Table S17. Spectroscopic data of the complexes in acetonitrile and methanol. Maximum absorption wavelength (λ_{abs}), maximum phosphorescence and photoluminescence wavelengths $(\lambda_{\rm P} \text{ and } \lambda_{\rm PL})$ and phosphorescence quantum yields $(\Phi_{\rm P})$. For solutions, complex concentration ~3.5 × 10⁻⁵ M, λ_{ex} = 380 nm. Undegassed solutions. *a* = Data from ref. [8].

Compounds	Acetonitrile			Methanol		
	λ_{abs} (nm)	$\lambda_{\rm P}$ (nm)	$\Phi_{ m P}$	λ_{abs} (nm)	$\lambda_{\rm P}$ (nm)	$arPhi_{ m P}$
ReL1 ^a	299, 364	624	0.010	299, 362	623	0.006
ReL3	305, 364	626	0.010	302, 357	620	0.006
ReL4	302, 366	629	0.010	304, 360	618	0.007

Table S18. Results of the emission decay measurements of the complexes in the solid state (pristine powder). Luminescence decay times (τ_i) with their respective fractions of intensity (f_i) and normalized pre-exponential factor (a_i), defined by the multiexponential analysis of the decay curves: $I_F(t) = \sum a_i \times \exp(-t/\tau_i)$ and $f_i = a_i \times \tau_i/(\sum a_j \times \tau_j)$.

	τ_i (ns)	fi	a_i
ReL3 ^a	$\tau_1 = 890 \pm 20$	0.05	0.44
	$\tau_2 = 185 \pm 8$	0.19	0.31
	$\tau_3 = 33 \pm 2$	0.76	0.26
ReL4 ^b	$\tau_1 = 563 \pm 18$	0.85	0.29
	$\tau_2 = 93 \pm 10$	0.12	0.26
	$\tau_3 = 12 \pm 4$	0.03	0.45
ReL1 ^c	$\tau_1 = 3.75$	0.03	
	$\tau_2 = 28.1$	0.02	
	$\tau_3=338$	0.95	
$a: \lambda_{\rm ex} = 420$ nm,	$\lambda_{\rm em} = 538-542 \text{ nm}$		

b: $\lambda_{\text{ex}} = 380 \text{ nm}, \lambda_{\text{em}} = 538-542 \text{ nm}$

c: From ref. [8]. $\lambda_{\text{ex}} = 380 \text{ nm}, \lambda_{\text{em}} = 610-690 \text{ nm}.$

Figures

Crystallography

Figure S1. Crystal packing, view along *a* (ReL3) and *b* (ReL4).

Figure S2. a) Orientation of two neighbouring molecules in the crystal cell of **ReL4**. b) Plan view of these molecules. The orange color indicates the overlap of the aromatic systems. Hydrogen atoms not represented for the sake of clarity.

TD-DFT calculations

Figure S3. Isodensity plots of the frontier molecular orbitals of complexes **ReL3** and **ReL4** in CH₂Cl₂: Unoccupied orbitals.

Figure S4. Isodensity plots of the frontier molecular orbitals of complexes **ReL3** and **ReL4** in CH₂Cl₂: Occupied orbitals.

Figure S5. Spin density distribution for the lowest triplet state T_1 of complexes **ReL3** and **ReL4** in CH₂Cl₂. Calculations based on the optimized triplet state with DFT method at the PBE1PBE/LanL2DZ level.

Figure S6. Molecular orbital diagrams of ReL3 and ReL4.

Electrochemical selected curves

OSWV study was performed on a Pt working electrode in $CH_2Cl_2 + 0.1 \text{ M } n[Bu_4N][BF_4]$ at room temperature in the presence of ferrocene used as internal reference. Frequency 20 Hz, amplitude 20 mV, step potential 5 mV.

Cyclic voltammograms of the indicated compounds on a Pt working electrode in $CH_2Cl_2 + 0.1$ M $n[Bu_4N][BF_4]$ at room temperature at a scan rate of 0.2 Vs⁻¹ or at other mentioned scan rates.

Figure S7. OSWV: anodic (left) and cathodic (right) scans of complex ReL3.

Figure S8. Segmented cyclic voltammograms of complex **ReL3**, in oxidation part at 0.2 V/s (left), and of the first oxidation and reduction processes at respectively, 0.2 (black), and 1.0 V/s (red) (right).

Figure S9. Cyclic voltammograms of the first reduction process of **ReL3** at respectively, 0.2 (blue), 0.5 (red), and 1.0 (black) V/s.

Figure S10. OSWV: anodic (left) and cathodic (right) scans of ligand ReL4.

Figure S11. Segmented cyclic voltammograms of ligand **ReL4**, in oxidation part (left), and of the first oxidation and reduction processes scanning in the two different directions at 0.2 V/s (right).

Figure S12. Cyclic voltammograms of the first reduction process of **ReL4** at, respectively, 0.2 (red), 0.5 (blue), and 1.0 (black) V/s.

Figure S13. OSWV: anodic (left) and cathodic (right) scans of ligand L3.

Figure S14. Cyclic voltammograms of ligand **L3** at 0.2 V/s toward anodic (black) and cathodic potential (left), and of its first reduction process at respectively, 0.2 (green), 1.0 (blue), 10.0 (red), and 20.0 (black) V/s (right).

Figure S15. OSWV anodic (left) and cathodic (right) scans of ligand L4.

Figure S16. Cyclic voltammograms of ligand **L4** at 0.2 V/s (left), and at respectively, 0.1 (blue), 1.0 (red), and 5.0 (black) V/s (right).

Spectroscopy

Figure S17. Left: Normalized excitation ($\lambda_{em} = 640 \text{ nm}$) and emission ($\lambda_{ex} = 380 \text{ nm}$) spectra of complexes **ReL3** and **ReL4** in CH₂Cl₂ at around 3.5×10^{-5} M. Right: corresponding samples illuminated by a hand-held UV lamp (365 nm).

Figure S18. Photoluminescence decay curves of a) **ReL3** and b) **ReL4** in CH₂Cl₂. $\lambda_{ex} = 380$ nm; $\lambda_{em} = 580-660$ nm. Solutions were bubbled with Ar (5 mins) before measurement.

Figure S19. Absorption spectra of complexes **ReL3** (5.2×10^{-5} M) and **ReL4** (3.6×10^{-5} M) at constant concentration in water/acetonitrile mixtures.

Proton numbering

Figure S20. Proton numbering scheme for NMR. The numbering is the same for ligands and for complexes.