One-Dimensional Single-Helix Coordination Polymers Self-assembled by Crown Ether Appended-N-Heteroacene Radical Anion

Kyosuke Isoda,^{a,b,c*} Hinako Takahashi,^b Yuichiro Mutoh,^d Norihisa Hoshino,^e Tomoyuki Akutagawa^e

- ^{a.} Program in Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan.
- ^{b.} Division of Advanced Materials Science, Graduate School of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan
- ^{c.} Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
- ^{d.} Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Tokyo 162-8601, Japan
- e. Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

General Methods.

¹H and ¹³C NMR spectra were recorded on a Varian UNITY INOVA400NB spectrometer. Chemical shift of ¹H and ¹³C NMR signals were quoted to tetramethylsilane (δ = 0.00) and (δ = 77.00) as internal standards, respectively. FT-IR spectra were recorded with a Perkin-Elmer Spectrum Two FT-IR Spectrometer. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were collected on a JEOL JMS-S3000 instrument using dithranol as a matrix. Elemental analyses were carried out with Perkin-Elmer instruments Series II CHNS/O Analyzer 2400II. Cyclic voltammetry was carried out in CH_3CN solutions (5 or 10 mL) of compounds (2.0 mM) and Bu_4NPF_4 (0.10 M) as electrolyte with glassy carbon working, Pt counter, and an Ag/Ag⁺ reference electrode using an ALS CHI 600E electrochemical analyzer. UV-Vis-NIR absorption spectra were recorded with a SHIMADZU SolidSpec-3700 UV-Vis-NIR Spectrophotometer. Electron spin resonance (ESR) spectra were recorded with JEOL JES-FA200 spectrometer for **2** with sodium cations at r.t. and with FA-100 spectrometer equipped with an ESR900 cryostat (Oxford) for solutions fused in quartz tubes (for 1, NaBPh₄, and both 1 and NaBPh₄). Single crystals for X-ray diffraction were grown from CHCl₃/hexane solution for 1 (See Experimental Section for 2). A suitable single crystal was selected in Paratone® N oil at ambient temperature and mounted on a MiTeGen MicroMount[™] using the oil. All diffraction data were collected at -173 °C on a Bruker Apex II Ultra X-ray diffractometer equipped with a Mo K α radiation (λ = 0.71073) source. Intensity data were processed using the APEX3 software. The solution of the structures and the corresponding refinements were carried out using the Yadokari-XG¹ graphical interface. The positions of non-hydrogen atoms were determined by a dual-space method using the SHELXT-2014/5² program and refined on F^2 by full-matrix leastsquares techniques using the SHELXL-2018/3³ program. All non-hydrogen atoms were refined with anisotropic thermal parameters, while all the hydrogen atoms were placed using AFIX

instructions. For **Na1**, although a residual peak slightly above 1 e/Å³ was observed in the final difference map (Alert level C), no discrete and reliable solvent or small molecules could not be located at the position.

Scheme S1. Synthesis of 1.

Synthesis of 2,3-dicyano-7,10,13,16,19-pentaoxacyclopentadecino[2,3-g]pyrazino[2,3-

b]quinoxaline (1)

To the suspension of **3** (1.8 g, 5.0 mmol) and Pd/C (0.5 g) in dry EtOH (150 ml) was slowly added dropwise N_2H_4 · H_2O (5 ml) at 0 °C and then heated at 80 °C for 4 h under Ar. The reaction mixture was cooled to r.t. and filtrated through Celite under Ar. The reaction crude was heated with 1,2-dichloro,4,5-dicyanopyradine (1.0 g, 5.0 mmol) in dry EtOH (70 ml) at 80 °C for 24 h. After cooling to r.t., the product was filtrated and dried under vacuum. The obtained red solid was treated with DDQ (1.59 g, 7.0 mmol) for 2 h at r.t., and then the reaction mixture was extracted with CHCl₃ three times. The combined organic layers were washed with water, and dried over anhydrous Na_2SO_4 . After filtration and evaporation, the crude product was purified by column chromatography (silica, CHCl₃/MeOH = 10/1 (v/v)), recrystallized with CHCl₃/hexane, and dried under vacuum to afford **1** as an orangish solid (0.80 g, 38%).

¹H NMR (400 MHz, CDCl₃): δ 7.43 (s, 2H), 4.44 (t, *J* = 4.0 Hz, 4H), 4.05 (t, *J* = 4.0 Hz, 4H), 3.82 (m, 8H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.09, 142.61, 138.32, 131.86, 113.06, 105.37, 71.07, 69.82, 69.55, 68.19 ppm; MALDI-TOF-MS: m/z calcd: 422.39 [M]⁺; found: 422.23; elemental analysis: calcd (%) for CHNO: C 56.87, H 4.30, N 19.90; found: C 56.52, H 4.35, N 19.67.

Electro-crystallization of radical anion 2. with Na*

The solution of **1** (6.33 mg, 0.015 mmol) and NaBPh₄ (51.3 mg, 0.15 mmol) as electrolyte in dry CH₃CN (10 ml) was electro-crystallized upon the constant current of 2 μ A for 3 days in N₂

atmosphere in glove box. The product was obtained as dark green solid. Table S1 shows various conditions to prepare the single crystal **2**.

•	•	•		
No.	mmol	1 : NaBPh₄(mmol)	μA ^b	Product
1	0.005	1:10	2	powder
2	0.010	1:5	2	powder
3	0.010	1:10	2	powder
4	0.010	1:15	2	powder
5	0.010	1:20	2	powder
6	0.015	1:10	1	powder
7	0.015	1:10	2	crystal ^c
8	0.015	1:100	1	powder
9	0.015	1:100	2	crystal
10	0.020	1:10	1	powder
11	0.020	1:10	2	crystal
12	0.020	1:50	2	crystal
13	0.030	1:100	1	powder
14	0.030	1:100	2	powder

Table S1. Experiments for preparation of **2** in various conditions

a : solvent: dry CH₃CN(10 ml), electro-crystallized under Ar

b : applied constant current

c : analyzed by single-crystallographic X-ray analysis

Scheme S2. Synthesis of 1.

Attempts to prepare 2 with Na⁺

Na metal, NaH, or NaBH₄ (equimolar to **1**) was added slowly dropwise to the solution of **1** (4 mg) in CH₃CN (10 mL) at 0 °C under Ar atmosphere. The addition of Na metal and NaH immediately changed the color of CH₃CN solution of **1** from brown to green. In the case of Na metal and NaH, we obtained a little amount of dark-green powder, which was presumably radical anion **2**, however, we did not obtain single crystal to analysis the structures in detail. In contrast, the addition of NaBH₄ did not generate the precipitate despite the color change was observed.

Figure S1. Cyclic voltammetry measurements of **1** in the presence/absence of NaBPh₄ and KBPh₄ (top) and **1** with NaI and NaBF₄ (10 eq. relative to **1**) (bottom) in CH₃CN solutions.

	E^{1}_{red}	E^{2}_{red}	ΔE^{1}_{red}	$\Delta E^2_{\rm red}$		
1	-0.78	-1.70	-	-		
$1 + NaBPh_4$	-0.68	-1.24	0.10	0.46		
2 + KBPh ₄	-0.74	-1.44	0.04	0.26		

Table S2. Electrochemical data of 1 and 1 with NaBPh₄ and KBPh₄.

Figure S2. Photograph of setup for electrocrystallization of ${\bf 1}$ with NaBPh₄ in a CH₃CN solution.

Identification code	ydkr_a	Isoda1	
CCDC	1908846	1908847	
Empirical formula	$C_{20}H_{18}N_6O_5$	$C_{20}H_{18}N_6NaO_5$	
Formula weight	422.40	445.39	
Temperature	100(2) K	100(2) K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Monoclinic	
Space group	P21/c	P21/c	
Unit cell dimensions	$a = 15.311(2) \text{ Å} \alpha = 90^{\circ}.$	$a = 15.823(6) \text{ Å} \alpha = 90^{\circ}.$	
	$b = 14.370(2) \text{ Å}$ $\theta = 91.020(2)^{\circ}$.	<i>b</i> = 7.751(3) Å β = 97.807(6)°.	
	$c = 8.7464(13) \text{ Å} \gamma = 90^{\circ}.$	$c = 16.592(7) \text{ Å} \gamma = 90^{\circ}.$	
Volume	1924.0(5) Å ³	2016.0(14) Å ³	
Ζ	4	4	
Density (calculated)	1.458 mg/m ³	1.467 mg/m ³	
Absorption coefficient	0.108 mm ⁻¹	0.126 mm ⁻¹	
F(000)	880	924	
Crystal size	$0.137 \times 0.051 \times 0.037 \text{ mm}^3$	$0.200 \times 0.090 \times 0.030 \text{ mm}^3$	
Theta range for data collection	1.330 to 27.500°.	1.299 to 27.494°.	
Index ranges	-19<=h<=19, -18<=k<=18,	-16<=h<=20, -10<=k<=9,	
	-11<=l<=11	-21<=l<=15	
Reflections collected	21125	10720	
Independent reflections	4395 [<i>R</i> (int) = 0.0413]	4485 [<i>R</i> (int) = 0.0724]	
Completeness to theta = 25.242°	100 %	99.6 %	
Data / restraints / parameters	4395 / 0 / 280	4485 / 0 / 289	
Goodness-of-fit on F ²	1.018	1.020	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0376, wR_2 = 0.0812$	$R_1 = 0.0597$, $wR_2 = 0.1440$	
R indices (all data)	$R_1 = 0.0576, wR_2 = 0.0904$	$R_1 = 0.1188, wR_2 = 0.1750$	
Largest diff. peak and hole	0.229 and −0.246 e.Å ⁻³	1.048 and −0.282 e.Å ⁻³	

 Table S3. Crystal data and structure refinement for 1 (ydkr_a) and 2 with sodium cation (Isoda1)

Figure S3. ESR spectrum of (a) **1** in a solid state and (b) **1** in a CH_3CN solution and (c) $NaBPh_4$ in a CH_3CN solution at -196 °C.

Figure S4. (a) UV-vis-NIR spectrum of electrocrystallized solution including **1** and NaBPh₄ in a CH₃CN solution. Time dependence of UV-vis-NIR spectra of **1** with (a) NaI and (b) NaPF₆ in a CH₃CN solution, respectively.

Figure S5. Cyclic voltammograms of NaBPh₄ in the presence/absence of 15-crown-5 (10 eq. relative to 1) in CH₃CN solutions.

References

- 1. C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218-224.
- 2. G. M. Sheldrick, *Acta Crystallogr. Sect. A Found. Adv.*, 2015, **71**, 3-8.
- 3. G. M. Sheldrick, *Acta Crystallogr. Sect. C Struct. Chem.*, 2015, **71**, 3-8.