Supporting Information

Pressure induced semiconductor-semimetal-superconductor

transition for magnesium hexaborides

Li Duan^a, Jing Su^a, Ning Gong^a, Biao Wan^a, Peng Chen^a, Pengyuan Zhou^a, Zhibin Wang^b, Zhiping Li^b, Lailei Wu*^{a,b}

^aState Key Laboratory of Metastable Materials Science and Technology, College of Material Scien ce and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China ^bKey Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China

L. Duan and J. Su contributed equally to this work.

*Correspondence and requests for materials should be addressed to wll@ysu.edu.cn

Fig. S1 Phonon dispersion curves of (a) *Cmcm*, (b) *I*4/*mmm*, (c) *C*2/*m*-I, (d) *C*2/*m*-II and (e) $P2_1/m$ at zero pressure, (f) $P2_1/m$ at 70GPa for MgB₆.

Fig. S2 Bands structure of (a) I4/mmm, (b) C2/m-I, (c) C2/m-II, (d) $P2_1/m$ of MgB₆.

Fig. S3 The densities of states calculated by PBE (a) C2/m-II, (b) $P2_1/m$ at ambient pressure.

Fig. S4 Eliashberg spectral function $\alpha^2 F(\omega)$ (dark yellow area) and electron-phonon coupling parameters $\lambda(\omega)$ (red line) of C2/m-I for MgB₆.

Fig. S5 The ELF with isosurfaces 0.75 (a) B_8 cluster and B_6 octahedra of *Cmcm* structure, (b) B_{24} cluster of *I4/mmm* structure, (c) *C2/m*-II, (d) *P2*₁/*m*.

Born-Huang criteria for orthorhombic phase: $C_{ii}>0(i=1\sim6),$ $(C_{11}+C_{22}-2C_{12})>0, (C_{11}+C_{33}-2C_{13})>0, (C_{22}+C_{33}-2C_{23})>0,$ $[C_{11}+C_{22}+C_{33}+2(C_{12}+C_{13}+C_{23})]>0.$

tetragonal phase:

 $C_{ii} > 0 \ (i=3, 4, 6),$ $C_{11} - C_{12} > 0,$ $C_{11} + C_{33} - 2C_{13} > 0,$ $2C_{11} + C_{33} + 2C_{12} + 4C_{13} > 0.$

monocilnic structure:

$$\begin{split} &C_{\rm ii} > 0 \; ({\rm i}{=}\;1,\,2,\,3,\,4,\,5,\,6), \\ &[C_{11}{+}C_{22}{+}C_{33}{+}2(C_{12}{+}C_{13}{+}C_{23})] > 0, \\ &(C_{33}C_{55}{-}C_{35}{}^2) > 0, \; (C_{44}C_{66}{-}C_{46}{}^2) > 0, \; (C_{22}{+}C_{33}{-}2C_{23}) > 0, \\ &[C_{22}(C_{33}C_{55}{-}C_{35}{}^2){+}2C_{23}C_{25}C_{35}{-}C_{23}{}^2C_{55}{-}C_{25}{}^2C_{33}] > 0, \\ &\{2[aC_{15}C_{25}{+}bC_{15}C_{35}{+}cC_{25}C_{35}]{-}[dC_{15}{}^2{+}eC_{25}{}^2{+}fC_{35}{}^2]\}{+}gC_{55} > 0, \\ &a=C_{33}C_{12}{-}C_{13}C_{23}, \; b=C_{22}C_{13}{-}C_{12}C_{23}, \; c=C_{11}C_{23}{-}C_{12}C_{13}, \\ &d=C_{22}C_{33}{-}C_{23}{}^2, \; e=C_{11}C_{33}{-}C_{13}{}^2, \; f=C_{11}C_{22}{-}C_{12}{}^2, \\ &g=C_{11}C_{22}C_{33}{-}C_{11}C_{23}{}^2{-}C_{22}C_{13}{}^2{-}C_{33}C_{12}{}^2{+}2C_{12}C_{13}C_{23}. \end{split}$$

	atoms	X	у	Z	site
Cmcm	Mg	-0.29123	-0.63821	0.75000	8g
	B1	-0.35423	-0.35694	0.75000	8g
	B2	0.16798	-0.42073	0.75000	8g
	B3	-0.00000	-0.64058	1.41019	8 <i>f</i>
	B4	0.00000	-0.93983	-0.93983	8 <i>f</i>
	B5	-0.00000	-0.22821	1.09012	8 <i>f</i>
	B6	-0.09786	-0.50000	0.50000	8e
I4/mmm	Mg1	0.00000	0.00000	0.81648	4 <i>e</i>
	Mg2	-0.00000	0.50000	0.25000	4d
	B1	0.28091	0.50000	0.08942	16 <i>n</i>
	B2	0.27527	0.27527	0.16088	16 <i>m</i>
	B3	0.12371	0.70010	-0.00000	16 <i>l</i>
<i>C</i> 2/ <i>m</i> -I	Mg	-0.50000	-0.00000	-0.00000	2b
	B1	0.52215	-0.50000	0.27674	4 <i>i</i>
	B2	0.66639	-0.00000	0.73943	4i
	B3	0.65047	-0.00000	0.49065	4 <i>i</i>
C2/m-II	Mg	-0.33501	-0.00000	0.82714	4i
	B1	-0.66187	-0.25878	0.67179	8 <i>j</i>
	B2	-0.12456	0.00000	0.02290	4i
	B3	-0.20420	-0.00000	0.32761	4i
	B4	-0.53754	-0.00000	0.65646	4i
	B5	-0.50000	0.25921	-0.00000	4g
$P2_{1}/m$	Mg	-0.68671	-0.25000	1.15591	2 <i>e</i>
	B1	-0.22485	-0.25000	0.34295	2 <i>e</i>
	B2	-0.49698	-0.25000	0.79945	2 <i>e</i>
	B3	-0.40498	-0.25000	1.33352	2 <i>e</i>
	B4	-0.13181	-0.75000	0.48382	2 <i>e</i>
	В5	-0.04557	-0.75000	1.04339	2 <i>e</i>
	B6	-0.86741	-0.75000	1.13269	2 <i>e</i>

Table S1. The Wyckoff positions of the proposed MgB₆ structures are listed.

	C2/m-II	<i>P</i> 2 ₁ / <i>m</i> (70 GPa)
	478	771
C_{22}	371	757
C_{33}	458	753
C_{44}	229	262
C_{55}	188	344
C_{66}	230	260
C_{12}	136	200
C_{13}	67	193
C_{15}	-39	44
C_{23}	118	152
C_{25}	69	-48
C_{35}	-39	57
C_{46}	32	-18
В	213	
G	179	
Ε	420	
B/G	1.19	
ν	0.171	

Table S2. The elastic constants C_{ij} (GPa), bulk moduli *B* (GPa), the shear moduli *G* (GPa), Young's modulus *E* (GPa), the *B/G* value and Poisson ratio *v* for the *C*2/*m*-II and *P*2₁/*m* of MgB₆.