Supporting Information for :

Iron(II) Tetrafluoroborate Complexes of New Tetradentate *C*-Scorpionates as Catalysts for the Oxidative Cleavage of *trans*-Stilbene with H₂O₂

Denan Wang^a, James R. Gardinier^{a*} and Sergey V. Lindeman^a

Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233.

Table of Contents

S1. NMR spectra of intermediate and ligands L and L*	S2
S2. NMR spectra of iron complexes 1 and 2	S8
S3. Evans data and plot	S9
S4. Electronic spectra	S10
S5. Results of 4 hr photocatalysis experiments	S11
S6. Time course of photocatalytic experiments catalyzed by RFT and ${f 1}$ (purple) or ${f 2}$ (green)	S12
S7. Stability test for 1 and 2 under conditions of photocatalysis.	S13

S1. NMR spectra of intermediate and ligands L and L*

Figure S1. (c) ¹H-NMR spectrum of a mixture of P1a and P1b (bottom, maroon spectrum) with resonances for minor component of P1b highlighted by arrows compared to spectrum of pure P1a (top, aqua).

Note: Due to the similarity in solubility (and R_f values) of P1b with both P1a and P2a, it has not yet been possible to isolate pure P1b. As stated in the main text, the mixtures of P1b and P1a are sufficient for either conversion to P2a or for use to make the ligands.

Figure S1. (*d*) ¹³C-NMR spectrum of a mixture of P1b (major) and P2a (minor) in CDCl₃ at 22 °C compared to that of pure P2a, bottom)

Figure S1. (e) ¹H-NMR of P2a in CDCl₃ at 22 °C

Figure S1. (h) ¹³C-NMR of P2b in CDCl₃ at 22 °C

Figure S1. (i) ¹H-NMR of ligand L in CDCl₃ at 22 °C

Figure S1. (j) ¹³C-NMR of ligand L in CDCl₃ at 22 °C

S7

S2. NMR spectra of iron complexes **1** and **2**.

Figure S2. (a) ¹H-NMR of complex 1 in CD₃CN at 22 °C

S3. Evans data and plot

Figure S3. (a) Top: Variable temperature ¹H-NMR of complex **1** (Evans method) in CD₃CN at range from 22 to -30 °C. (b) bottom: Plot of the relationship between μ B and temperature.

Table S1. Values of μ_B for 1 in CH₃CN at different temperature

Temp	μв					
295	5.216					
283	5.206					
273	5.162					
263	5.104					
253	5.006					
243	4.86					

S4. Electronic spectra

Figure S4. Overlay of electronic spectra of 1 and 2 in CH_3CN (a) at room temperature and (b) the spectra of 1 at temperatures between 238 and 313 K.

(a)

(b)

S5. Results of 4 hr photocatalysis experiments

Table S2. Summary of data from photocatalytic experiments^a performed under same conditions as Table 3 of main text, but for 4h rather than 1.5 hr.

		product ^c							
entry	[Fe] catalyst ^b	а	b	С	d	е	f	% ^d	
1	1	83	4	5	3	1	2	98	
2	2	76	4	6	5	1	5	97	
3	$[Fe(tpa)(CH_3CN)_2](BF_4)_2$	77	10	4	5	1	2	99	
4	$[\dot{F}e(\dot{H}_2O)_6](\dot{B}F_4)_2$	38	30	1	1	1	9	80	
5	none	26	1	0	0	0	0	27	

^{a.} 0.04 mmol *trans*- stilbene, 0.0032 mmol, 8 mol% RFT, 3 mL 9:1 CH₃CN:H₂O, 30°C, 440-450 nm 12W, 4h. ^{b.} 0.0040 mmol 10 mol%. ^{c.} labelling as per Figure 5, GC yield, errors in a \pm 3%, in b-f \pm 1% ^{d.} % conversion.

S6. Time course of photocatalytic experiments catalyzed by RFT and 1 (purple) or 2 (green).

Figure S5. Overlay plot of relative GC yield versus time

Table S3. GC yields for photocatalysed reactions using RFT and either 1 or 2 as catalysts

С

Catalyst 1								Catalyst 2						
Time	а	b	С	d	е	f	Total	а	b	С	d	е	f	Total
(min)							conversion							conversion
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	8	0	0	0	0	0	8	7	0	0	0	0	0	7
40	35	0	0	0	0	0	35	32	0	0	0	0	0	32
60	65	1	1	1	0	1	69	60	2	3	1	0	1	67
90	89	2	2	2	1	2	98	83	4	5	3	1	2	98
120	88	3	2	2	1	2	98	82	5	5	3	1	2	98
150	86	4	4	2	1	2	99	80	4	5	4	1	2	96
200	84	4	5	3	1	2	99	79	4	6	4	1	4	98
240	83	4	5	3	1	2	98	76	4	6	5	1	5	97

а

b

d

f

е

S7. Stability test for **1** and **2** under conditions of photocatalysis.

Figure S6. ¹H NMR spectra for solutions of RFT and either (a) **1** or (b) **2** in 1 mL 10 vol% D_2O in CD_3CN before (bottom maroon spectrum) and after (top aqua spectrum) irradiation at 450 nm 90 min.

