Electronic Supplementary Information

Homogeneous vs. heterogeneous catalysis for hydrogen evolution by a nickel(II) bis(diphosphine) complex

Giovanni Bergamini^a and Mirco Natali^{* a}

^{*a.*} Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.

E-mail: mirco.natali@unife.it

S1. Synthesis and characterization

Figure S1. ¹H-NMR spectrum (bottom) and ³¹P-NMR spectrum (top right) of ligand $P_2^{Ph}N_2^{PhCH_2COOH}$ in DMSO-d⁶.

Figure S2. Diffuse reflectance IR spectrum of ligand P₂^{Ph}N₂^{PhCH₂COOH} in a KBr pellet.

Figure S3. ¹H-NMR spectrum (bottom) and ³¹P-NMR spectrum (top right) of 1 in ACN-d³.

Figure S4. Diffuse reflectance IR spectrum of 1 in a KBr pellet.

Figure S5. Absorption spectrum of 1 in acetonitrile solution.

Figure S6. Cyclic voltammetry of 1 mM **1** in acetonitrile (0.1 M TBAPF₆ as supporting electrolyte), scan rate v = 100 mV/s.

S2. Electrocatalysis in acetonitrile

Figure S7. Comparison of the theoretical amount of hydrogen produced according to the charge passed (black trace) and the experimental amount determined by gas chromatography (red dots) during a 2-hour bulk electrolysis at -1.20 V vs. Fc/Fc⁺ of a 1 mM acetonitrile solution of **1** containing 0.5 M TFA. A Faradaic efficiency of 77% can be estimated.

S2.1 Kinetics of electrocatalytic hydrogen formation in acetonitrile with TFA

Foot-of-the-wave analysis (FOWA)^[S1] was applied to estimate the kinetics of the first protonation step (k_1 in Figure 1B of the main text). An average value was obtained from the FOWA of the CV response of 1 mM **1** in acetonitrile in the presence of 0.3, 0.4, and 0.5 M TFA at a scan rate of v = 100 mV/s, according to eq S1, where c_{TFA} is the concentration of acid, f = F/RT.

$$\frac{i_{cat}}{i_p} = \frac{4.48 \sqrt{\frac{k_1 C_{TFA} RT}{F v}}}{1 + \exp\left[f(E - E_{cat})\right]}$$
(S1)

The rate constant of the second protonation (k_2 in Figure 1B of the main text) was estimated from the potential shift of the catalytic wave according to eq S2.

$$E_{cat} = E_{Ni(I)/Ni(0)} + \frac{RT}{F} ln \left(1 + \sqrt{\frac{k_1}{k_2}} \right)$$
(S2)

Figure S8. Foot-of-the-wave analysis (FOWA) of the CV response of 1 mM **1** in acetonitrile solution in the presence of 0.3 (top), 0.4 (middle), and 0.5 M (bottom) TFA.

Tafel plot analysis was then performed to benchmark electrocatalysis by complex 1 in acetonitrile using TFA as the proton source. For an EECC catalytic mechanism with $k_1 \gg k_2$, the TOF_{max} can be calculated according to eq S3, with c_{TFA} set to the reference value of 1 M.^[S2]

$$TOF_{max} = k_2 c_{TFA} \tag{S3}$$

The TOF- η relationship (Tafel plot, Figure 2 blue line) can be then obtained upon application of eq S4, with E_{TFA}^{0} being the thermodynamic potential for the reduction of TFA in acetonitrile (-0.61 V vs. Fc/Fc⁺).^[S3]

$$TOF = \frac{TOF_{max}}{1 + exp[f(E_{TFA}^{0} - E_{cat})]exp(-f\eta)}$$
(S4)

S3. Photocatalysis in aqueous solution

Figure S9. Kinetics of photoinduced hydrogen evolution from 5 mL aqueous solutions containing 50 μ M **1**, 0.5 mM Ru(bpy)₃²⁺, and 0.5 M ascorbic acid in the range of pH 3-6.

Figure S10. Luminescence spectra (excitation at 480 nm) of aqueous solutions containing 0.07 mM $Ru(bpy)_3^{2+}$ and 0-150 μ M **1**.

Figure S11. Luminescence spectra (excitation at 480 nm) of aqueous solutions containing 0.07 mM $Ru(bpy)_3^{2+}$ and 0-0.5 M ascorbic acid at pH 5.

Figure S12. Initial rates of photoinduced hydrogen evolution from 5 mL aqueous solutions containing 0-150 μ M **1**, 0.5 mM Ru(bpy)₃²⁺, and 0.5 M ascorbic acid at pH 5.

S3.1 Photocatalytic hydrogen evolution

Results from photochemical hydrogen evolution by **1** in the presence of $Ru(bpy)_3^{2+}$ as the sensitizer and ascorbic acid as the sacrificial donor (Figure 3A) have been analyzed to extract relevant parameters such as maximum turnover number (TON) and turnover frequency (TOF, min⁻¹).

Maximum TONs have been estimated according to eq S5 using the amount of hydrogen in moles (n_{H_2}) attained at the plateau of the kinetic traces in Figure 3A and the initial amount of catalyst in solution (n_1).

$$TON = \frac{n_{H_2}}{n_1} \tag{S5}$$

Maximum TOFs have been estimated according to eq S6, in which the hydrogen production rate (R_{H_2}) has been calculated from the fitting of the hydrogen evolution kinetics (Figure 3A) in the linear portion of the traces (typically between 0.5-2 hours irradiation).

$$TOF = \frac{R_{H_2}}{n_1} \tag{S6}$$

The data obtained are collected in Table S1 and in Figure 3B in a pictorial representation.

[1] (µM)	$n_{ m H_2}$ (µmol)	R _{H2} (μmol min ⁻¹)	TON	TOF (min ⁻¹)
10	18.2	0.057	272	1.14
25	20.1	0.069	146	0.55
50	21.8	0.107	80	0.43
100	25.3	0.127	43	0.25
150	13.6	0.084	33	0.11

Table S1. Photocatalytic data from Figure 3A.

S4. Characterization of 1@TiO₂

Figure S13. Full range diffuse reflectance FT-IR spectrum obtained on 1@TiO₂ in KBr pellet.

Figure S14. Absorption spectrum of the aqueous solution obtained upon treatment of 1@ TiO₂ (1 cm² surface area) with 8 mL 0.1 M NaOH (optical pathlength of 0.1 cm); a molar extinction coefficient of $\varepsilon = 53,000$ M⁻¹cm⁻¹ at 257 nm was used as obtained with complex 1 in 0.1 M NaOH.

Figure S15. J-V curves of bare TiO_2 and **1@TiO_2** in 0.1 M Na₂SO₄ (scan rate v = 100 mV/s) at pH 2 (top) and pH 4 (bottom).

S5. References of the ESI

- [S1] C. Costentin, S. Drouet, M. Robert and J. M. Saveant, J. Am. Chem. Soc., 2012, 134, 11235.
- [S2] C. Costentin and J. M. Saveant, ChemElectroChem, 2014, 1, 1226.
- [S3] V. Fourmond, P.-A. Jacques, M. Fontecave and V. Artero, *Inorg. Chem.*, 2010, 49, 10338.