Supporting Information

Fluorescent BF₂ Complexes of Pyridyl-isoindoline-1-ones: Synthesis,

Characterization and Their Distinct Response to Mechanical Force

Meifang Liu^{a,*}, Yi Han^b, Wei Yuan^b, Changxiang Guo^b, Shiling Shi^b, Xia Liu^band Yulan Chen^{b,*} ^a College of Chemistry-Chemical & Environmental Engineering, Weifang University, Weifang, 261061, P. R. China E-mail: <u>liumf@iccas.ac.cn (M. Liu)</u> Phone/Fax: +86-536-8785283 ^b Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China E-mail: yulan.chen@tju.edu.cn (Y. Chen);

1. Materials and instruments

All reagents were purchased from Acros or Aldrich and used without further purification. Tetrahydrofuran was dried with sodium and benzophenone. Dichloromethane was dried with CaH₂. Others reagents and solvents were dealt with standard procedure. $Pd(PPh_3)_4$ was synthesized according to the reference [*S1*], and charged with nitrogen in a Schlenk tube.

The UV-vis absorption spectra were recorded on a PerkinElmer Lambda 750 spectrophotometer. Fluorescence spectra and quantum yields of solid powders were recorded on a Hitachi F-7000 fluorescence spectrophotometer. The transient fluorescence decay curves were measured on an Edinburgh FLS 920 fluorescence spectrometer. Mass spectra were obtained with a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer. ¹³C NMR, ¹¹B NMR, ¹⁹F NMR and ¹H NMR spectra were recorded on a Bruker instrument at 400 MHz by using solvent: DMSO-*d*₆ or CDCl₃. Thermogravimetric analyses (TGA) were carried out using a TA Instruments Q-50 with a heating rate of 10 °C/min. DSC measurements were recorded using the TA Instruments Q-20 with a scan rate of 10 °C/min. The powder XRD patterns were obtained with a Rigaku Smart Lab (9 kW) X-ray diffractometer. Single crystals were obtained in the mixture of acetate, hexane and CH₂Cl₂ for **B2** by a slow solvent diffusion method. The single crystal X-ray diffraction was carried out on a Rigaku SCX-mini diffractometer with graphite monochromatic Mo-K α radiation (λ =0.7173Å) by ω scan mode. Density functional theory (DFT) calculations were performed in Gaussian 09 software at the B3LYP functional with the 6-31G* basis set level.

2. Synthesis

B1 was synthesized according to the reference [*S2*]. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.72 (d, *J* = 6.0 Hz, 1H), 8.11-7.88 (m, 2H), 7.80-7.70 (m, 1H), 7.61 (pd, *J* = 7.4, 1.3 Hz, 2H), 7.52-7.37 (m, 2H),

6.32 (s, 1H). ¹¹B NMR (128 MHz, CDCl₃, ppm) δ1.98 (s), 1.75 (s), 1.52 (s). ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -138.72, -138.80, -138.88, -138.95.

4 and **5** were synthesized according to the references [*S3*,*S4*]

2.1 Synthesis of Compound 1.

1 was synthesized according to the reference [*S2*]. Isoindolin-1-one (0.40 g, 3 mmol), 5bromopyridine- 2-carbaldehyde (1.02 g, 6 mmol), and K₂CO₃ (0.80 g, 6 mmol), the yield of **1** (0.44 g, 48%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.63 (d, *J* = 2.3 Hz, 1H), 7.93-7.85 (m, 1H), 7.83-7.72 (m, 2H), 7.63 (td, *J* = 7.5, 1.1 Hz, 1H), 7.55 (td, *J* = 7.4, 0.9 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 6.30 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 168.61, 154.12, 150.16, 139.33, 138.61, 137.68, 132.19, 129.99, 129.40, 125.24, 123.79, 120.11, 117.57, 100.67, 100.00. MALDI-TOF (m/z), calculated: C₁₄H₉BrN₂O [M+H]⁺ 300.99; found: 301.00

2.2 Synthesis of Compound 2.

A mixture of **1** (0.2 g, 1.5 mmol), **4** (0.7g, 1.5 mmol), K₂CO₃ (0.6g, 4.5 mmol), THF (15 mL) and H₂O (5 mL) and Pd(PPh₃)₄ (35 mg, 0.03 mmol) was charged with nitrogen. The reaction mixture was stirred and refluxed for overnight. CH₂Cl₂ was added, then the mixture was dried with Na₂SO₄. The residue was chromatographically purified on silica gel eluting with PE/CH₂Cl₂ (5:1, v:v) to afford **2** as an orange solid (0.55 g, 67%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.83 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 7.3 Hz, 1H), 7.73 (d, *J* = 7.1 Hz, 1H), 7.59 (dt, *J* = 14.7, 7.3 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.21-7.10 (m, 11H), 7.10-7.00 (m, 6H), 6.33 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 168.71, 154.26, 147.43, 143.90, 143.59, 143.55, 141.64, 140.19, 138.00, 137.87, 134.99, 134.49, 133.29, 132.21, 132.03, 131.41, 131.37, 131.34, 129.73, 129.53, 127.88, 127.82, 127.70, 126.70, 126.64, 126.58, 125.97, 124.21, 123.74, 120.05, 101.72. MALDI-TOF (m/z),

calculated: C₄₀H₂₈N₂O [M+H] + 553.22; found: 553.18.

2.3 Synthesis of Compound **3**.

The synthetic method of **3** is similar to that of **2**.

1 (0.2 g, 1.5 mmol), **5** (0.67 g, 1.8 mmol), K₂CO₃ (0.6 g, 4.5 mmol), THF (15 mL) and H₂O (5 mL), Pd(PPh₃)₄ (35 mg, 0.03 mmol), **3** as an orange solid (0.54 g, 78%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 11.24 (s, 1H), 8.82 (d, *J* = 2.2 Hz, 1H), 7.84 (ddd, *J* = 26.8, 22.4, 7.5 Hz, 3H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.57-7.46 (m, 3H), 7.31 (dd, *J* = 17.0, 8.6 Hz, 6H), 7.20-7.13 (m, 5H), 7.07 (t, *J* = 7.3 Hz, 2H), 6.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 168.72, 153.82, 148.14, 147.38, 147.18, 137.90, 137.81, 134.11, 133.38, 132.01, 130.61, 129.67, 129.53, 129.43, 127.52, 124.83, 124.29, 123.75, 123.46, 123.44, 120.03, 101.81. MALDI-TOF (m/z), calculated: C₃₂H₂₃N₃O [M]⁺465.18; found: 465.15.

2.4 Synthesis of Compound **B2 and B3**.

At 0 °C, triethylamine was added to **2** or **3** in dry CH_2Cl_2 . BF₃·Et₂O was added dropwise. The reaction mixture was stirred overnight at 25°C. The reaction was quenched by adding water (10 mL) and the mixture was extracted with CH_2Cl_2 (3 × 50 mL). The organic phase was dried by anhydrous Na_2SO_4 . The residue was purified chromatographically on Al_2O_3 gel eluting with PE/EtOAC (5:1, v:v).

B2: 2 (1.10 g, 2 mmol), CH_2Cl_2 (60 mL), triethylamine (4 mL, 28 mmol) and BF_3 Et₂O (4 mL, 30 mmol) were used to afford **B2** as a red powder (1.07 g, 89%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.83 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 7.3 Hz, 1H), 7.73 (d, *J* = 7.1 Hz, 1H), 7.59 (dt, *J* = 14.7, 7.3 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.26 (s, 2H), 7.24 - 6.93 (m, 13H), 6.33 (s, 1H), 5.30 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 171.23, 148.41, 146.40, 145.40, 143.34, 143.32, 143.22, 142.28, 140.28, 139.71, 139.53, 136.10, 134.68,

132.55, 132.42, 132.16,131.42, 131.34, 131.32, 131.28, 131.18, 127.98, 127.91, 127.74, 126.94, 126.79, 126.74, 125.90, 124.25, 121.02, 92.89. MALDI-TOF (m/z), calculated: C₄₀H₂₇BF₂N₂O [M]⁺ 600.22; found: 600.12. ¹¹B NMR (128 MHz, CDCl₃, ppm) δ 1.80 (s). ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -138.84.

B3: **3** (0.93 g, 2 mmol), CH₂Cl₂ (60 mL), triethylamine (4 mL, 28 mmol) and BF₃·Et₂O (4 mL, 30 mmol) were used to afford **B3** as a red powder (0.94 g, 92%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.86 (s, 1 H), 8.12 (dd, *J* = 8.5, 1.9 Hz, 1 H), 7.94 (d, *J* = 6.8 Hz, 1 H), 7.74 (d, J = 7.1 Hz, 1 H), 7.65 – 7.55 (m, 2 H), 7.47 (t, *J* = 8.5 Hz, 3 H), 7.32 (t, *J* = 7.8 Hz, 4 H), 7.20 – 7.06 (m, 8 H), 6.33 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.32, 147.86, 146.97, 139.87, 139.08, 136.21, 134.83, 132.35, 131.33, 129.56, 127.41, 127.10, 125.27, 124.31, 124.02, 122.70, 120.93, 92.90. MALDI-TOF (m/z), calculated: C₃₂H₂₂BF₂N₃O [M]⁺ 513.18; found: 513.12. ¹¹B NMR (128 MHz, CDCl₃, ppm) δ 1.83 (s). ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -139.11.

3. Photophysical properties in solution

	B1				B2				B3						
	${}^a\lambda_{abs}$	^b λ _{em}	۲v	ďΔλ	^e €(LM⁻	${}^a\lambda_{abs}$	^b λ _{em}	۲	ďΔλ	3 ⁹	${}^a\lambda_{abs}$	^b λ _{em}	۲v	ďΔλ	^e €(LM⁻
	(nm)	(nm)	(nm)	(nm)	¹ cm ⁻¹)	(nm)	(nm)	(nm)	(nm)	(LM ⁻	(nm)	(nm)	(nm)	(nm)	¹ cm ⁻¹)
										¹ cm ⁻¹)					
toluene	400	462	62	~	2.8x10 ⁴	427	499	72	~	3.8x10 ⁴	450	536	86	~	2.9x10 ⁴
chloroform	395	455	60	~	2.8x10 ⁴	425	557	132	~	4.0x10 ⁴	455	610	155	~	2.9x10 ⁴
THF	396	455	59	~	2.6x10 ⁴	422	530	108	~	4.2x10 ⁴	443	613	170	~	3.1x10 ⁴
DMF	394	455	61	~	2.9x10 ⁴	422	weak	~	~	3.8x10 ⁴	446	n.d.	~	~	3.1x10 ⁴
CH₃CN	390	452	62	~	2.8x10 ⁴	416	weak	~	~	3.6x10 ⁴	440	n.d.	~	~	3.2x10 ⁴
pristine		472		5			537		35			600		50	
ground		477					572					650			

Table S1. Photophysical properties of B1, B2 and B3

^aMaximum absorption; ^bMaximum emission; ^cStokes shift; ^dRed shift value of fluorescence maximum after ground; ^eAbsorption coefficient in chloroform at the maximum absorption wavelength.

Figure S1. UV-vis absorption spectra of (a) **B1**, (c) **B2** and (e) **B3** (5×10^{-5} M) in various solvents; fluorescence spectra of (b) **B1**, (d) **B2** and (f) **B3** (5×10^{-5} M, excited at 410 nm for **B1**, excited at 425nm for **B2** and **B3**) in various solvents.

4. Photophysical properties in solid states

Figure S2. UV-vis spectra of (a) B1, (b) B2 and (c) B3 in different solid states.

Φ _{F pristine} (%) ^a	Φ _{F ground} (%) ^a
12.2	7.2
8.6	8.6
1.9	1.8
	Φ _{F pristine} (%) ^a 12.2 8.6 1.9

Table S2. The fluorescence quantum yields (Φ_F) of B1, B2 and B3 in solid state

^a The fluorescence quantum yields were measured with an absolute fluorescence quantum yield spectrometer.

Figure S3. Fluorescence decay curve (black line) of (a) **B1**, (b) **B2**, (c) **B3** in solution (CH₂Cl₂); (d) **B1**, (e) **B2**, (f) **B3** in film.

	fluorescen	ф (%)		
	In solution	In solid state	$\Psi_{\rm F}(\infty)$	
B1	3.44	1.75	65.5	
B2	30.42	3.20	19.3	
В3	10.34	4.43	10.0	

Table S3. Optical parameters of B1, B2 and B3

 Φ_F : The fluorescence quantum yields were determined by a relative method for solution with 3-(2-benzothiazolyl)-N,N-diethylumbelliferylamine (in CH₂Cl₂, Φ_F = 76%) as a standard.

5. Density functional theory (DFT) calculations

Table S4. Calculated dipole moments for B1, B2 and B3					
Compound	B1	B2	B3		
Dipole Moment	7.9282	7.9306	8.1819		
(Debye)					

Figure S4. Reversible switching of fluorescence emission of B2 by repeated grinding/fuming cycles.

2. Single crystal structures and data

Table S5	Crystal data	of B2	(CCDC+1888230)
Table 35.	Ciystai uata		(UUU.1000230)

Experical formula	C ₄₀ H ₂₇ BF ₂ N ₂ O
Space group	P-1
Cell lengths	a/Å 10.517(2) b/Å 11.328(2) c/Å 15.112(3)
Cell angles	α/° 88.40(3) β/° 84.21(3) γ/° 77.10(3)
Cell volume	1745.97/Å ³
Z, Z'	Z: 2, Z': 0
R-Factor (%)	5.61

Figure S5. Multiple intermolecular interactions existed in the crystals, including B-F···H–C, F-B···C and C=O···H-C interactions.

Figure S6. Dihedral angle of B2.

3. TGA curves

Figure S7. TGA curves of (a) **B1**, (b) **B2** (c) **B3** pristine samples. The decomposition temperature is about 283 °C for **B1**, 326 °C **B2** for and 363 °C for **B3**.

4. DSC curves

Figure S8. DSC curves for the pristine and ground samples of (a) **B1**, (b) **B2**, (c) **B3** (scan rate: 10 °C min⁻¹).

5. NMR and mass spectra

Figure S9. ¹H NMR spectrum of **1** in CDCl_{3.}

Figure S10. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S11. MALDI-TOF spectrum of 1.

Figure S12. ¹H NMR spectrum of 2 in CDCl_{3.}

Figure S13. ¹³C NMR spectrum of 2 in CDCl_{3.}

Figure S14. MALDI-TOF spectrum of 2.

Figure S15. ¹H NMR spectrum of 3 in CDCl_{3.}

Figure S16. ¹³C NMR spectrum of **3** in CDCl₃.

Figure S17. MALDI-TOF spectrum of 3.

Figure S18. ¹H NMR spectrum of B1 in CDCl_{3.}

-106 -110 -114 -118 -122 -126 -130 -134 -138 -142 -146 f1 (ppm)

Figure S20. ¹⁹F NMR spectrum of B1 in CDCl_{3.}

Figure S21. ¹H NMR spectrum of B2 in CDCl_{3.}

Figure S22. ¹³C NMR spectrum of B2 in CDCl_{3.}

Figure S24. ¹¹B NMR spectrum of B2 in CDCl_{3.}

Figure S25. ^{19}F NMR spectrum of B2 in $\text{CDCl}_{3.}$

Figure S26. ¹H NMR spectrum of B3 in CDCl_{3.}

Figure S27. ¹³C NMR spectrum of B3 in CDCl_{3.}

Figure S28. MALDI-TOF spectrum of B3.

6. References

S1. D. R. Coulson, *Inorg. Synth*. 1972, **13**, 121.

S2. Y. Zhou, Y. Xiao, D. Li, M. Y. Fu, X. H. Qian, J. Org. Chem. 2008, 73, 1571.

S3. R. Misra, T. Jadhav, B. Dhokale, S. M. Mobina, Chem. Comm. 2014, 50, 9076.

S4. J. Yang, Z. Ren, Z. Xie, Y. Liu, C. Wang, Y. Xie, Q. Peng, B. Xu, W. Tian, F. Zhang, Z. Chi, Q. Li, Z.

Li, Angew. Chem. 2017, **129**, 898.