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Table S1. Potentiometric and spectroscopic data for Cu(II) and Zn(II) complexes with ligand H9A, T=298 K, I=0.1 mol dm-3 (NaClO4) and M:L molar ratio = 
0.9:1. Values in parentheses are standard deviations on the last significant figure.

UV-Vis CD pH

Species logβ pKa  (nm)  (M-1 cm-1)  (nm)  (M-1 cm-1)

[CuH6L]5+ 56.72 (6) 4.51 800 232 -1.67 4.1
[CuH5L]4+ 52.21 (3) 5.66 670 33 231 -3.50 5.0
[CuH4L]3+ 46.55 (4) 7.25 632 50 231 -4.84 6.1
[CuH3L]2+ 39.30 (5) 7.62 613 53 339

270
231

-0.29
0.44
-2.78

7.0

[CuH2L]+ 31.68 (5) 8.87 568 66 339
253

-0.69
3.09

8.0

[CuHL] 22.81 (6) 9.64 518 71 650
530
339
253

0.38
-0.45
-0.69
4.66

9.0

[CuL]- 13.18 (6) 9.84 515 82 649
515
346
312
253

0.64
-0.88
-0.34
-0.03
5.42

9.9

[CuH-1L]2- 3.33 (5)
[CuH-3L]4- -18.01 (6) 512 89 649

515
355
318
253

0.78
-1.20
-0.31
0.25
6.43

11.0

[ZnH4L]3+ 42.80 (6) 7.82
[ZnH3L]2+ 34.88 (8) 8.78
[ZnH2L]+ 26.20 (1) 8.81
[ZnH1L] 17.39 (8) -
[ZnH-1L]2- -2.6 (1) -
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Table S2. Potentiometric and spectroscopic data for Cu(II) and Zn(II) complexes with ligand H11A, T=298 K, I=0.1 mol dm-3 (NaClO4) and M:L molar ratio = 
0.9:1. Values in parentheses are standard deviations on the last significant figure.

UV-Vis CD pH

Species logβ pKa  (nm)  (M-1 cm-1)  (nm)  (M-1 cm-1)

[CuH6L]5+ 55.71 (6) 5.35 662 128 655
242

-0.05
-1.67

5.0

[CuH5L]4+ 50.37 (5) 6.55 630 214 655
316
248

-0.23
0.10
-0.90

6.1

[CuH4L]3+ 43.82 (6) 7.53 618 256 655
316
246

-0.35
0.22
-0.73

7.1

[CuH3L]2+ 36.28 (7) 8.71 596 243 609
350
316
293
261

-0.21
-0.15
0.16
-0.05
1.49

8.2

[CuH2L]+ 27.57 (7) 9.17 518 282 658
535
350
316
293
262

0.12
-0.57
-0.21
0.17
-0.31
2.15

9.0

[CuHL] 18.40 (7) 10.18 

[CuL]- 8.22 (9) 10.23 512 319 658
535
350
316
293
267

0.16
-0.79
-0.14
0.30
-0.21
1.70

10.1

[CuH-1L]2- -2.01 (7)

[CuH-3L]4- -24.19 (8) 512 319 658
535
350
316
293
267

0.16
-0.79
-0.14
0.30
-0.21
1.70

11.1

[ZnH5L]4+ 48.4 (1) 6.24

[ZnH4L]3+ 42.14 (4) 7.56

[ZnH3L]2+ 34.58 (5) 8.25

[ZnH2L]+ 26.32 (6) 8.70

[ZnH1L] 17.62 (6) 9.70

[ZnL]- 7.9 (1) 9.94

[ZnH-1L]2- -2.02 (9) -
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Table S3. Potentiometric and spectroscopic data for Cu(II) and Zn(II) complexes with ligand H13A, T=298 K, I=0.1 mol dm-3 (NaClO4) and M:L molar ratio = 
0.9:1. Values in parentheses are standard deviations on the last significant figure.

UV-Vis CD pH

Species logβ pKa  (nm)  (M-1 cm-1)  (nm)  (M-1 cm-1)

[CuH5L]4+ 51.82 (1) 5.74 653 47 241 -2.32 5.2

[CuH4L]3+ 46.08 (2) 6.70 620 63 642
547
337
290
241

0.15
-0.05
-0.27
0.15
-1.60

6.1

[CuH3L]2+ 39.38 (2) 7.97 570 81 642
547
340
258

0.39
-0.37
-0.98
2.10

6.9

[CuH2L]+ 31.41 (3) 9.75 543 92 642
547
340
255

0.45
-0.47
-1.26
3.39

8.0

[CuHL] 21.66 (4) 10.21 540 82 642
547
340
252

0.45
-0.47
-1.26
3.80

9.1

[CuL]- 11.45 (4) 10.93 525 96 642
547
340
247

0.45
-0.47
-1.26
5.77

10.1

[CuH-1L]2- 0.52 (7)

[CuH-3L]4- -21.8 (1) 520 110 642
528
340
250

0.45
-0.57
-0.81
7.06

11.0

[ZnH5L]4+
49.44 (4) 6.22

[ZnH4L]3+
43.23 (3) -

[ZnH2L]+ 27.24 (5) -
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Table S4. Stoichiometry, molecular formula and average m/z value for the species present in ESI-MS spectra of Cu(II) and 
Zn(II) complexes with calcitermin, H9A, H11A and H13A; L:M molar ratio = 1:0.9 in water/methanol 50:50 solution.

Species Formula Average m/z

calcitermin/Cu(II) H6L3+ C77H124N23O20 563.6
([H5L] ∙ Na)3+ C77H123N23O20Na 571.0
([H4L] ∙ Na2)3+ C77H122N23O20Na2 578.3
[CuH4L]3+ C77H122N23O20Cu 583.9
([CuH3L] ∙ Na)3+ C77H121N23O20CuNa 591.3

calcitermin/Zn(II) H6L3+ C77H124N23O20 563.6
([H5L] ∙ Na)3+ C77H123N23O20Na 571.0
([H4L] ∙ Na2)3+ C77H122N23O20Na2 578.3
[ZnH4L]3+ C77H122N23O20Zn 584.3
([ZnH3L] ∙ Na)3+ C77H121N23O20ZnNa 591.6
([ZnH2L] ∙ NaK)3+ C77H120N23O20ZnNaK 604.3
([ZnHL] ∙ Na2K)3+ C77H119N23O20ZnNa2K 611.9

H9A/Cu(II) H6L3+ C74H122N21O20 541.7
([H5L] ∙ Na)3+ C74H121N21O20Na 549.0
([H4L] ∙ Na2)3+ C74H120N21O20Na2 556.3
[CuH4L]3+ C74H120N21O20Cu 563.7
([CuH3L] ∙ Na)3+ C74H119N21O20CuNa 571.0

H9A/Zn(II) H6L3+ C74H122N21O20 541.7
([H5L] ∙ Na)3+ C74H121N21O20Na 549.0
([H4L] ∙ Na2)3+ C74H120N21O20Na2 556.3
[ZnH4L]3+ C74H120N21O20Zn 563.6

H11A/Cu(II) H6L3+ C74H122N21O20 541.7
([H5L] ∙ Na)3+ C74H121N21O20Na 549.0
([H4L] ∙ Na2)3+ C74H120N21O20Na2 556.3
[CuH4L]3+ C74H120N21O20Cu 562.0
([CuH3L] ∙ Na)3+ C74H119N21O20CuNa 569.3
([CuH2L] ∙ Na2)3+ C74H118N21O20CuNa2 576.6

H11A/Zn(II) H6L3+ C74H122N21O20 541.7
([H5L] ∙ Na)3+ C74H121N21O20Na 549.0
([H4L] ∙ Na2)3+ C74H120N21O20Na2 556.3
[ZnH4L]3+ C74H120N21O20Zn 562.3
([ZnH3L] ∙ Na)3+ C74H119N21O20ZnNa 569.6

H13A/Cu(II) H6L3+ C74H122N21O20 541.7
([H5L] ∙ Na)3+ C74H121N21O20Na 549.0
([H4L] ∙ Na2)3+ C74H120N21O20Na2 556.3
[CuH4L]3+ C74H120N21O20Cu 562.0
([CuH3L] ∙ Na)3+ C74H119N21O20CuNa 569.3
([CuH2L] ∙ Na2)3+ C74H118N21O20CuNa2 576.6

H13A/Zn(II) H6L3+ C74H122N21O20 541.7
([H5L] ∙ Na)3+ C74H121N21O20Na 549.0
([H4L] ∙ Na2)3+ C74H120N21O20Na2 556.3
[ZnH4L]3+ C74H120N21O20Zn 562.3
([ZnH3L] ∙ Na)3+ C74H119N21O20ZnNa 569.6
([ZnH2L] ∙ Na2)3+ C74H118N21O20ZnNa2 577.0
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Table S5. Hydrolysis constants for Cu(II)1 and Zn(II).2

Species logβ

[ZnH-1]+ -8.96
[ZnH-2] -16.9
[ZnH-3]- -28.4
[ZnH-4]2- -41.2

[CuH-1]+ -7.7
[Cu2H-2]2+ -10.75
[Cu3H-4]2+ -21.36
[CuH-4]2- -39.08

Table S6. Potential cytotoxic effect of Cu(II) and Zn(II) determined by an NR assay*.
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* Neutral Red (NR) cytotoxicity in vitro assay was performed in regular fibroblast (L929) cells from ECACC collection. The experiment was performed 
according to ISO:10993 guidelines (Biological evaluation of medical devices; Part 5: Tests for in vitro cytotoxicity; Part 12: Biological evaluation of medical 
devices, sample preparation and reference materials (ISO 10993-5:2009 and ISO/IEC 17025:2005). A standard protocol for the NR assay was used from 
Nature Protocols [7] Media: DMEM and a suitable amount of antibiotics (amphotericin B, penicillin-streptomycin) were used. Following concentrations of 
metal ions were studied: 0.06 M, 0.03 M, 0.015 M and 0.0075 M of Cu(II) salt solution and 0.06 M, 0.03 M and 0.015 M for Zn(II) salt solution. Each salt 
solution was dissolved in medium. Incubation with proper mixture for 24/48h in 5% CO2 at 37oC was proceeded. After incubation, the medium was removed 
and 100 µl of NR solution (40 ug/mL) was added to wells of the plate. Cells were incubated with NR for 2 h at 37oC. After incubation, a dye was removed 
and wells were rinsed with PBS (Sigma Aldrich) and left to dry. At the same time destain solution (1% glacial acetic acid, 50% of 96% ethanol and 49% of 
deionized water; v/v) was added to each well. The plate was shaken (30 min) until NR was extracted from the cells and formed a homogenous solution. 
Furthermore, an absorbance was measured using microplate reader at 540 nm. As a positive control, cells not treated with salt solution was considered 
with 100% of potential cellular growth.

concentration 24H 48H

Cu(II) salt Survival rate Cytotoxicity Survival rate Cytotoxicity 

0.06M 26% 74% 21% 79%

0.03M 98% 2% 88% 12%

0.015M 100% 0% 89% 11%

0.0075M 100% 0% 100% 0%

Zn(II) salt Survival rate Cytotoxicity Survival rate Cytotoxicity 

0.06M 19% 81% 30% 70%

0.03M 76% 24% 59% 41%

0.015M 100% 0% 93% 7%

Table S7.  Calculated dissociation constants (Kd/M), pM values and coordination hypotheses for Cu(II) and Zn(II) complexes at pH 5.4 and 7.4.

pH 5.4 pH 7.4
M(II)/L system

Coordination hypothesis 
(% of M complexation) Kd pM Coordination hypothesis Kd pM

WT-Cu(II) 3NIm (100%) 1.16 · 10-6 6.95 3NIm, NH2 1.31 · 10-10 10.83

H9A-Cu(II) 2NIm (97%) 3.95 · 10-6 6.53 2NIm, NH2 3.07 · 10-9 9.47

H11A-Cu(II) NIm (84%) 5.40 · 10-5 6.07 NIm, NH2, N- 8.15 · 10-7 7.08

H13A-Cu(II) 2NIm or NIm, NH2 (94%) 4.03 · 10-6 6.52 2NIm, NH2 2.50 · 10-9 9.56

WT-Zn(II) 2NIm, COO- (36%) 1.02 · 10-3 6.00 3NIm, COO- 3.07 · 10-7 7.48

H9A-Zn(II) 2NIm (4%) 6.08 · 10-2 6.00 2NIm 4.32 · 10-5 6.09

H11A-Zn(II) 1NIm, COO- (10%) 8.60 · 10-3 6.00 2NIm, COO- 4.35 · 10-5 6.10

H13A-Zn(II) 1NIm (35%) 1.24 · 10-3 6.00 2NIm 1.16 · 10-6 6.26
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Figure S1. Species distribution diagram for protonation equilibria of ligand calcitermin (VAIALKAAHYHTHKE).

Figure S2. Species distribution diagram for protonation equilibria of ligand H9A (VAIALKAAAYHTHKE).
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Figure S3. Species distribution diagram for protonation equilibria of ligand H11A (VAIALKAAHYATHKE).

Figure S4. Species distribution diagram for protonation equilibria of ligand H13A (VAIALKAAHYATAKE).
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Figure S5. Exemplificative species distribution diagram relative to Cu(II)/H9A complexes; M:L molar ratio = 0.9:1.

Figure S6. Exemplificative species distribution diagram relative to Cu(II)/H11A complexes; M:L molar ratio = 0.9:1.
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Figure S7. Exemplificative species distribution diagram relative to Cu(II)/H13A complexes; M:L molar ratio = 0.9:1.



S13

Figure S8. Vis absorption spectra [350–800 nm; optical path 1 cm] for Cu(II) complexes with H9A; M:L ratio = 0.9:1.

Figure S9. Vis absorption spectra [350–800 nm; optical path 1 cm] for Cu(II) complexes with H11A; M:L ratio = 0.9:1.



S14

Figure S10. Vis absorption spectra [350–800 nm; optical path 1 cm] for Cu(II) complexes with H13A; M:L ratio = 0.9:1.

Figure S11. CD spectra [220–800 nm; optical path 1 cm] for Cu(II) complexes with H9A; M:L ratio = 0.9:1.
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Figure S12. CD spectra [220–800 nm; optical path 1 cm] for Cu(II) complexes with H11A; M:L ratio = 0.9:1.

Figure S13. CD spectra [220–800 nm; optical path 1 cm] for Cu(II) complexes with H13A; M:L ratio = 0.9:1.



S16

Figure S14. (A) Aromatic and (B) aliphatic region of 1H-1H 
TOCSY NMR spectra of 3.0 mM wild type calcitermin, T = 
298 K, in the absence (black) and in the presence (red) 
of 0.1 Cu(II) eq., pH 7.4

A)

B)
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Figure S15. (A) Aromatic and (B) aliphatic region of 1H-
1H TOCSY NMR spectra of 3.0 mM H9A mutant, T = 298 
K, in the absence (black) and in the presence (red) of 0.1 
Cu(II) eq., pH 7.4

A)

B)

A)
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Figure S16. (A) Aromatic and (B) aliphatic region of 
1H-1H TOCSY NMR spectra of 3.0 mM H11A 
mutant, T = 298 K, in the absence (black) and in the 
presence (green) of 0.1 Cu(II) eq., pH 7.4

B)



S19

Figure S17. (A) Aromatic and (B) aliphatic region of 1H-1H TOCSY NMR spectra of 3.0 mM H13A mutant, T = 298 K, in the absence (black) and in the 
presence (blue) of 0.1 Cu(II) eq., pH 7.4

A)

B)
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Figure S18. Exemplificative species distribution diagram relative to Zn(II)/H9A complexes; M:L molar ratio = 0.9:1.

Figure S19. Exemplificative species distribution diagram relative to Zn(II)/H11A complexes; M:L molar ratio = 0.9:1.
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Figure S20. Exemplificative species distribution diagram relative to Zn(II)/H13A complexes; M:L molar ratio = 0.9:1.
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Figure S21. (A) Aromatic and (B) aliphatic region of 1H-1H TOCSY NMR spectra of 3.0 mM wild type calcitermin, T = 298 K, in the absence (black) and in 
the presence (orange) of 0.9 Zn(II) eq., pH 7.4

B)

A)
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Figure S22. (A) Aromatic and (B) aliphatic region of 1H-1H 
TOCSY NMR spectra of 3.0 mM H9A mutant, T = 298 K, in the 
absence (black) and in the presence (red) of 0.9 Zn(II) eq., pH 7.4

A)

B)
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Figure S23. (A) Aromatic and (B) aliphatic region of 1H-1H TOCSY NMR spectra of 3.0 mM H11A mutant, T = 298 K, in the absence (black) and in the 
presence (green) of 0.9 Zn(II) eq., pH 7.4

B)

A)
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Figure S24. (A) Aromatic and (B) aliphatic region of 1H-1H TOCSY NMR spectra of 3.0 mM H13A mutant, T = 298 K, in the absence (black) and in the 
presence (blue) of 0.9 Zn(II) eq., pH 7.4

A)

B)
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Figure S25. Competition plot for a solution containing equimolar concentration (1mM) of Zn(II), wild-type calcitermin VAIALKAAHYHTHKE, Ac-
SHSHSHSHS-NH2,3 HAVAHHH-NH2

4 and Ac-HGDHYH-NH2.5

Figure S26. Competition plot for a solution containing equimolar concentration (1mM) of Cu(II), wild-type calcitermin VAIALKAAHYHTHKE, Ac-
SHSHSHSHS-NH2

3 and DAGHGQISHKRHKTDSFVGLM-NH2.6
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Figure S27. Competition plot for a solution containing Cu(II) (0.77 µM), Zn(II) (8.9 µM) and wild-type calcitermin VAIALKAAHYHTHKE (0.60 µM).
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Figure S28. Comparison of CD spectra of WT calcitermin and its H9A, H11A and H13A mutants in 10mM SDS solution, pH 5.4.
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Figure S29. Comparison of CD spectra of WT calcitermin and its complexes with Zn(II) and Cu(II) in 10mM SDS solution, pH 5.4, M:L ratio = 1:1.
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Figure S30. Comparison of CD spectra of Cu(II) complexes of WT calcitermin, H9A, H11A and H13A mutants in 10mM SDS solution, pH 5.4, M:L ratio = 
1:1.
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Figure S31. Comparison of CD spectra of Zn(II) complexes of WT calcitermin, H9A, H11A and H13A mutants in 10mM SDS solution, pH 5.4, M:L ratio = 
1:1.
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